A coupling of infinite particle systems

By

T.S. MOUNTFORD

In this note we extend a coupling technique introduced in Mountford (1993) to a large class of interacting particle systems (IPSs) on the one dimensional lattice. A one dimensional IPS is a Markov process on state space D^Z where Z is the integers and (in this paper) D is some finite set of possible spin values. The generator for this process can be written as

$$\mathcal{Q}f(\eta) = \sum_{T} \sum_{\nu \in \mathcal{D}^{T}} (f(\nu\eta) - f(\eta)) c_{T}(\eta, \nu)$$

where the first sum is over finite subsets of Z, T and where $\nu\eta$ denotes the configuration with $\nu\eta(y)$ equal to $\nu(y)$ if $y \in T$ and equal to $\eta(y)$ otherwise. The function $c_T(\nu, \eta)$ can be assumed to be zero if $\nu(y) = \eta(y)$ for some y in T. In this case for ν different from η on T, we should think of the process as satisfying

$$P[\eta_{t+dt} = \boldsymbol{\nu} \text{ on } \mathbf{T} | \eta_t] = c_T(\eta_t, \boldsymbol{\nu}) dt + o(dt).$$

See Liggett (1985), especially section 1.3, for a discussion of existence questions. Throughout this paper we will assume that the process

is of *finite range*: there exists an $R < \infty$ so that $c_T(.)$ is zero if T has length greater than R and such that for any x in Z and T containing x of length at most R, $c_T(\nu, \eta)$ depends only on the spins $\eta(x-R)$, $\eta(x$ $-R+1),...,\eta(x),...,\eta(x+R)$.

and

has bounded flip rates : for each site x, $\sum_{x \in T} \sum_{\nu \in D^T} c_T(\nu, \eta) < 1$. The

bound of 1 is arbitrary, any bound can be reduced to 1 by rescaling time.

Given these hypotheses, there exists a unique Markov semigroup S(t). corresponding to operator Ω . It should be noted that if the "flip" functions c are translation invariant, then (perhaps after rescaling time) the bounded flip rates hypothesis is guaranteed once the finite range hypothesis is satisfied.

A probability measure v on D^z is invariant for the process if for each f continuous on D^z and for each t > 0

Research supported by: Sloan Foundation, Rosenbaum Foundation, NSF.

Communicated by Prof. K. Ueno, December 6, 1993

Revised September 16, 1994