Relations on Pfaffians: number of generators

Dedicated to Mrs. Nishikawa

By

Mitsuyasu HASHIMOTO

Introduction

Let *R* be a commutative ring with unity, and consider a polynomial ring $S = R[x_{ij}]_{1 \le i < j \le n}$, where *n* is a positive integer. With letting $x_{ji} = -x_{ij}$ and $x_{ii} = 0$, we can form a generic alternating matrix (x_{ij}) . The ideal Pf_{2t} of *S* generated by all 2*t*-subPfaffians of (x_{ij}) is called the *(generic) Pfaffian ideal* of order 2*t*.

The main purpose of this article is to determine the number of minimal generators of the relation module, or the fisrt syzygy module of a Pfaffian ideal provided R is a field. In the following cases, the relation module of the Pfaffian ideal is known to be generated by linear relations (i.e., elements of degree t+1, because 2t-Pfaffians are homogeneous of degree t): the case $R \supset \mathbf{Q}$ [10, 12], t=1, n=2t (trivial), n=2t+1[5] or n=2t+2[21]. Moreover, Kurano [16] proved that when R is a field of characteristic p>0 and if 2p>n-2t, then the first syzygy of the Pfaffian ideal Pf_{2t} is generated by the linear relations.

On the other hand, Kurano showed that when n = 8 and t = 2, we need a new generator of degree t+2 of the first syzygy when R is a field of characteristic two [17]. In particular, we see that there is no minimal free resolution of generic Pfaffian ideals over the ring of integers Z in general.

Our main result is

Theorem 7.8. Let K be a field of characteristic p.

- 1 If $p \neq 2$, then the first syzygy module of Pf_{2i} as an S-module is generated by linear relations. Or equivalently, we have $\beta \xi_{,j} = 0$ for $j \neq t+1$.
- 2 If p=2, then we have

$$\operatorname{Tor}_{2}^{S}(S/Pf_{2t}, K) \cong [\operatorname{Tor}_{2}^{S}(S/Pf_{2t}, K)]_{t+1} \oplus \bigoplus_{i=1}^{[\log_{2} t]} \bigwedge^{2(t+2^{i})} F$$

as GL(F)-modules so that $\beta_{2,j}^2 = 0$ unless $j = t + 2^i$ for some $0 \le i \le \lfloor \log_2 t \rfloor$.

Communicated by Prof. M. Maruyama, November 29, 1994