The homotopy type of the space of rational functions

Dedicated Professor Seiya Sasao on his 60th birthday

By

M. A. GUEST, A. KOZLOWSKI, M. MURAYAMA and K. YAMAGUCHI

1. Introduction

For each positive integer d, let Hol_d denote the space of all holomorphic (equivalently, algebraic) maps of degree d from the Riemann sphere $S^2 = \mathbb{C} \cup \infty$ to itself. This space is of interest both from a classical and a modern point of view (see [1], [5]). Let Hol_d^* be the subspace of Hol_d consisting of maps which preserve a basepoint of S^2 . It is well known that Hol_1 is the group of fractional linear transformations $\operatorname{PSL}_2(\mathbb{C})$ and that Hol_1^* may be identified with the affine transformation group of \mathbb{C} . It is an elementary fact that Hol_d and Hol_d^* are connected spaces. The fundamental groups of these spaces are $\mathbb{Z}/2d$, \mathbb{Z} respectively; these computations are due to Epshtein ([6]) and Jones (see [8]). The following more general result was obtained by Segal:

Theorem 0 ([8]). Let Map_d be the space of all continuous maps of degree d from S^2 to itself and let Map_d^* be the subspace consisting of maps f such that $f(\infty) = 1$. Then the natural inclusion maps induce the following isomorphisms of homotopy groups:

- (1) If k < d, then $\pi_k(\operatorname{Hol}_d^*) = \pi_k(\operatorname{Map}_d^*) = \pi_{k+2}(S^2)$.
- (2) If k < d, then $\pi_k(\operatorname{Hol}_d) = \pi_k(\operatorname{Map}_d)$.

The stable homotopy type of Hol_d^* was studied in [3]. In this note we shall extend the above results by determining some further homotopy groups of the space Hol_d . Our results are as follows:

Theorem 1. (1) For $k \ge 2$,

$$\pi_{k}(\operatorname{Hol}_{d}) = \begin{cases} \pi_{k}(S^{3}) & d = 1\\ \pi_{k}(S^{3}) \oplus \pi_{k}(S^{2}) & d = 2\\ \mathbb{Z}/2 & d \ge 3, \ k = 2 \end{cases}$$

- (2) If $k \ge 3$ and $d \ge 3$, then $\pi_k(\operatorname{Hol}_d) = \pi_k(\operatorname{Hol}_d^*) \oplus \pi_k(S^3)$.
- (3) In particular, if $d > k \ge 3$, then $\pi_k(\operatorname{Hol}_d) = \pi_{k+2}(S^2) \oplus \pi_k(S^3)$.

Communicated by Prof. A. Kono, December 6, 1994