Ergodic decomposition of probability measures on the configuration space

Dedicated to Professor Takeshi Hirai on his 60th birthday

By

Hiroaki Shimomura

Introduction

Let X be a locally compact space which satisfies the second countable axiom. Any locally finite subset of X is called a configuration in X, that is a subset $\gamma \subset X$ such that $\gamma \cap K$ is finite for any compact set $K \subset X$. Let us denote by Δ_X the space of all infinite and by B_X the space of all finite configurations in X, and set $\Gamma_X := \Delta_X \cup B_X$. We introduce a measurable structure \mathscr{C} on Γ_X such that \mathscr{C} is a minimal σ -algebra with which all the functions, $\gamma \in \Gamma_x \to |\gamma \cap B| \in \mathbf{R}$ are measurable, where B runs through all the Borel sets in X and $|\gamma \cap B|$ is the number of the set $\gamma \cap B$. It is known that $(\Gamma_{\chi}, \mathscr{C})$ is a standard space (See, theorem 1.2 in [3]) and hence any probability measure μ on (Γ_x, \mathscr{C}) is decomposed into conditional probability measures with resect to any sub- σ -field of \mathscr{C} . The subject of this paper are two kinds of measures on (Γ_X, \mathscr{C}) with well known properties and their ergodic decompositions. The first one is a Diff_0X -quasiinvariant probability measure μ , where X is a connected para-compact C^{∞} -manifold and $\text{Diff}_0 X := \{ \psi \mid \psi : \text{ diffeomorphism on } X \text{ with compact support} \}.$ In 1975, Vershick-Gel'fand-Graev introduced elementary representations U_{μ} generated by these μ 's and discussed fully their interesting properties in [5]. In particular they showed that U_{μ} is irreducible if and only if μ is ergodic. Thus our subject correspondes to an irreducible decomposition of U_{μ} . It will be shown in section 1 that an ergodic decomposition of Diff_0X -quasi-invariant probability measure is actually possible.

The second one is a consideration of Gibbs measures μ having been discussed in great detail in statistical mechanics. An ergodic decomposition of such μ relative to the tail- σ -field leads us to a remarkable fact that there exist typical extremal measures which are regarded as a base on a convex set formed by such μ 's. These contents will be discussed in section 2. In both of section 1 and section 2, we denote a σ -finite non atomic Borel measure on X by m. The direct product m^n of n copies of m is naturally regarded as a measure on $\widetilde{X}^n := \{(x_1, \dots, x_n) \in X^n | x_i \neq x_j \text{ for all } i \neq j\}$ and thus an image measure $p_n m^n$ is obtained by the natural map $p_n : (x_1, \dots, x_n) \in \widetilde{X}^n \to \{x_1, \dots, x_n\} \in B_X^n := \{\gamma \in \Gamma_X | |\gamma| = n\}$. We denote it by $m_{X,n}$.

Communicated by Prof. T. Hirai, October 31, 1994