A remark on the homotopy type of the classifying space of certain gauge groups

By

Shuichi TSUKUDA

1. Introduction

Let P_k be the principal SU (2) bundle over a closed simply connected 4-manifold X with $c_2(P_k) = k$, g_k its gauge group and g_k^0 its based gauge group. For integers m and n, let (m, n) denote the GCD of m and n if $mn \neq 0$, (m, 0) = (0, m) = m. In [3], it is shown that $g_k \simeq g_{k'}$ if and only if (12/d(X), k) = (12/d(X), k') where d(X) = 1 if the intersection form of X is even and d(X) = 2 if odd.

In this paper we study the homotopy type of Bg_k . The purpose of this paper is to show the following result.

Theorem 1.1. If Bg_k is homotopy equivalent to $Bg_{k'}$, then (k, p) = (k', p) for any prime p.

Note that the result for p = 2, 3 is obtained from the result of [3].

Theorem is proved by computing the Postnikov invariant of $(Bg_k)_{(p)}$ which is Bg_k localized at p.

By [1], we have two homotopy equivalences

$$\mathrm{Bg}_{k} \simeq \mathrm{Map}_{k}(X, \mathrm{BSU}(2))$$

and

$$\mathrm{Bg}_{k}^{0} \simeq \mathrm{Map}_{k}^{*}(X, \mathrm{BSU}(2)).$$

For a fixed prime $p \ge 5$, denote $\mathbf{H}P^{\infty}_{(p)}$ by B and put (cf. [2])

$$M_{k,X} = \operatorname{Map}_{k}(X, \mathbf{H}P^{\infty})_{(p)}$$

$$\simeq \operatorname{Map}_{k}(X, B)$$

$$M_{k,X}^{*} = \operatorname{Map}_{k}^{*}(X, \mathbf{H}P^{\infty})_{(p)}$$

$$\simeq \operatorname{Map}_{k}^{*}(X, B).$$

Consider the Postnikov invariant $\mathbf{k}^{2p-2}(M_{k,X})$. If $\mathrm{Bg}_k \simeq \mathrm{Bg}_{k'}$, then $\mathbf{k}^{2p-2}(M_{k,X}) = \mathbf{k}^{2p-2}(M_{k',X})$ for all p. So, to prove Theorem 1.1, we have only to show