Variation formulas for harmonic modules of domains in R³ Dedicated to Professor Yukio Kusunoki on his 70th birthday Bv ## Hiroshi YAMAGUCHI ## 1. Introduction Let D be a domain spread over the complex plane C with C^{ω} smooth boundary ∂D . Suppose that D has a nono-trivial cycle γ . Then there exists a unique L^2 harmonic differential σ on D such that $\int_r \omega = (\omega, *\sigma)_D$ for all C^∞ closed differentials ω on \overline{D} . We put $\mu = \|\sigma\|_D^2$. Then $\star \sigma$ and μ are called the reproducing differential and the harmonic module for (D, γ) (see L. V. Ahofors [2]). The geometric meaning of μ was originally studied by Y. Kusunoki [6] and R. Accola [1]. We now let the domain D(t) over \mathbb{C} and the cycle $\gamma(t) \subseteq D$ (t) vary C^{ω} smoothly with a complex parameter t in a disk $B = \{|t| < r\}$, where D(0) = D and $\gamma(0) = \gamma$. For any $t \in B$, we have the reproducing differential $*\sigma$ (t, z) and the harmonic module $\mu(t)$ for $(D(t), \gamma(t))$, so $\mu(t)$ is a function on B. We put $\omega(t, z) = \sigma(t, z) + i * \sigma(t, z) = f(z) dz$, $\|\omega\|(t, z) = |f(t, z)|$, and $\frac{\partial \omega}{\partial \overline{t}} = \frac{\partial f}{\partial \overline{t}} dz$ for $z \in D(t)$. We here put $\mathfrak{D} = \bigcup_{t \in B} (t, D(t))$ and $\partial \mathfrak{D} = \bigcup_{t \in B} (t, \partial D(t))$ (t)). Thus \mathcal{D} is a complex 2 dimensional domain spread over $B \times \mathbb{C}$. Let $\varphi(t, z)$ be a defining function of $\partial \mathcal{D}$, that is, $\varphi(t, z)$ is a C^{ω} function in a neighborhood \mathcal{V} of $\partial \mathcal{D}$ over $B \times \mathbb{C}$ such that $\mathcal{D} \cap \mathcal{V}$ (resp. $\partial \mathcal{D}$) = { $\varphi < 0$ (resp. =0)} and $\frac{\partial \varphi}{\partial z} \neq 0$ on $\partial \mathcal{D}$. We define, for $(t, z) \in \partial \mathcal{D}$, $$k_{1}(t,z) = \frac{\partial \varphi}{\partial t} / \left| \frac{\partial \varphi}{\partial z} \right|$$ $$k_{2}(t,z) = \left\{ \frac{\partial^{2} \varphi}{\partial t \partial \bar{t}} \left| \frac{\partial \varphi}{\partial z} \right|^{2} - 2\Re \left\{ \frac{\partial^{2} \varphi}{\partial \bar{t} \partial z} \frac{\partial \varphi}{\partial t} \frac{\partial \varphi}{\partial \bar{z}} \right\} + \left| \frac{\partial \varphi}{\partial t} \right|^{2} \frac{\partial \varphi}{\partial z \partial \bar{z}} \right\} / \left| \frac{\partial \varphi}{\partial z} \right|^{3}. \quad (1.1)$$ Note that neither $k_1(t, z)$ nor $k_2(t, z)$ on $\partial \mathcal{D}$ depends on the choice of $\varphi(t, z)$. In [4] we call $k_2(t, z)$ the Levi curvature of $\partial \mathcal{D}$ at (t, z), and proved the following variation formulas: $$\frac{\partial \mu(t)}{\partial t} = \frac{1}{2} \int_{\partial D(t)} k_1(t, z) \| \omega \|^2(t, z) |dz|$$