A probabilistic scheme for collapse of metrics

Dedicated to Professor Masatoshi Fukushima on his 60th birthday

By

Yukio OGURA and Setsuo TANIGUCHI

1. Introduction

After the development of the theory of collapse of Riemannian manifolds [1, 3], Ikeda and the first author spelled out the correspondence between the collapse of Riemannian metrics on a manifold and the convergence of the Brownian motions associated with them in [5, 8]. In [8], the first author employed the monotone convergence theorem for Dirichlet forms to investigate the convergence of resolvents, semigroups, and eigenvalues corresponding to the Laplace-Beltrami operators associated with the converging sequence of Riemannian metrics on a manifold. However, the advantage of the monotone convergence theorem bears much more than what was investigated in the paper. Indeed, we can establish a probabilistic scheme to treat the collapse of "metrics" on an infinite dimensional space such as a path group space over a Lie group, which is the main motivation of this paper.

From a point of view of the theory of Dirichlet forms, the based state space need not to be a manifold, and we can develop an analytic argument for generalized "Riemannian metrics" on a more general space. Namely, consider a separable metric space X as a "manifold" and a family of separable real Hilbert spaces H_x , $x \in X$ as a family of its tangent spaces at x. Then the space **S** of families A of non-negative definite symmetric operators $A(x):H_x \to H_x^*$ is regarded as a space of generalized "Riemannian metrics", where the symmetry and non-negativity are defined in a usual manner identifying H_x^* with H_x . Roughly speaking, our first aim is to see the convergence of associated bilinear forms, resolvents and semigroups when $A_n \in \mathbf{S}$ converges to A, and the second is to specify the limit bilinear form. For details, see Section 2.

A typical example covered by the above scheme is a path group

 $X \equiv \{\mathbf{x}: [0, 1] \rightarrow G: \mathbf{x} \text{ is continuous and } \mathbf{x}(0) = e\}$

over a Lie group G with an AdG-invariant inner product $\langle \cdot, \cdot \rangle_{\mathscr{G}}$ on the Lie algebra \mathscr{G} . In this case, due to the group structure on X, all H_x coincide with a Hilbert space of functions $\mathbf{h}:[0,1] \to \mathscr{G}$ with $\mathbf{h}(0) = 0$ which are abso-

Communicated by Prof. S. Watanabe, February 22, 1995