Nonexistence of twisted Hecke algebras

By

Akihiko Gyoja

0. Introduction.

Let (W, S) be a Coxeter system with finite $S \neq \phi$ (cf. [1]). The group ring $\mathbb{C}[W]$ can be deformed in two ways.

(0.1) The twisted group ring. Let C[W]' be the vector space with the basis $\{e'_w\}_{w \in W}$. Assume that C[W]' has an associative C-algebra structure, and that

$$e'_{x} e'_{y} \in \mathbf{C}^{\times} e'_{xy}$$

 $e'_{x} e'_{1} = e'_{1} e'_{x} = e'_{x}$

for all $x, y \in W$. If we express $e'_x e'_y = c_{x,y} e'_{xy}$ with $c_{x,y} \in \mathbf{C}^{\times}$, then $c := \{c_{x,y}\}_{x,y \in W}$ becomes a 2-cocycle in $H^2(W, \mathbf{C}^{\times})$. We say that the **C**-algebra **C** [W]' is obtained by twisting the group ring **C**[W] by the cocycle c.

(0.2) The q-deformation of the group ring. (The Iwahori-Hecke algebra.) Let $q = \{q_w\}_{w \in W}$ be a family of non-zero complex numbers such that

(0.2.1)
$$q_x q_y = q_{xy}$$
 if $l(x) + l(y) = l(xy)$,

where l(w) is the length of $w \in W$. Let H(q,W) be the vector space with the basis $\{T_w\}_{w \in W}$. Then there is a unique associative C-algebra structure in H(q,W) such that

$$(0.2.2) T_s T_w = \begin{cases} T_{sw} & \text{if } sw > w \\ q_s T_{sw} + (q_s - 1) T_w & \text{if } sw < w, \end{cases}$$

where \leq is the Bruhat order. This **C**-algebra H(q,W) is called the Iwahori-Hecke algebra (cf. [1, Chap.4, §2, Ex. 23]), which we shall regard as a *q*-deformation of the group ring **C**[W].

The purpose of this note is to show that, in a sense, 'the q-deformation of the twisted group ring' does not exist.

Let us explain our result more precisely. Let notation be as above, and H a vector space over \mathbb{C} with the basis $\{e_w\}_{w \in W}$.

Received February 3, 1995