The Artin invariant of supersingular weighted Delsarte K3 surfaces

By

Yasuhiro Goto

1. Introduction

Let k be an algebraically closed field of positive characteristic p. Let X_k be a K3 surface defined over k. Denote by NS (X_k) the Néron-Severi group of X_k . It is known that NS (X_k) is a finitely generated abelian group with Z-rank at most 22; put $\rho(X_k) = \operatorname{rank}_Z NS(X_k)$. As in [10], we call X_k a supersingular K3 surface if $\rho(X_k) = 22$. Write disc NS (X_k) for the determinant of the intersection matrix of NS (X_k) . If X_k is supersingular, then

disc NS
$$(X_k) = -p^{2\sigma_0(X_k)}$$

for some integer $\sigma_0 = \sigma_0(X_k)$ satisfying $1 \le \sigma_0 \le 10$ (cf. [1]). The integer σ_0 may be called the *Artin invariant* of X_k . In [8], Shioda showed that σ_0 takes all the 10 possible values; furthermore, in [10], he gave concrete examples of K3 surfaces for all values of σ_0 except for $\sigma_0 = 7$ and 10. In this paper, we apply Shioda's ethod (which is based on Ekedahl's algorithm of computing σ_0) to weighted Delsarte surfaces and construct supersingular K3 surfaces with Artin invariant 10.

Let $Q = (q_0, q_1, q_2, q_3)$ be a quadruplet of positive integers such that $p \nmid q_i$ ($0 \le i \le 3$) and gcd $(q_{\alpha}, q_{\beta}, q_{\gamma}) = 1$ for every triple $\{\alpha, \beta, \gamma\} \subset \{0, 1, 2, 3\}$. The weighted projective 3-space over k of type Q is the projective variety $\mathbf{P}_k^3(Q) :=$ $\operatorname{Proj} k[x_0, x_1, x_2, x_3]$ where the polynomial algebra is graded by the condition $\operatorname{deg}(x_i) = q_i$ ($0 \le i \le 3$) (cf. [4]). Let μ_{q_i} be the group of q_i -th roots of unity in k^{\times} . Put $\mu = \mu_{q_0} \times \mu_{q_1} \times \mu_{q_2} \times \mu_{q_3}$. Then μ acts on \mathbf{P}_k^3 diagonally and we have $\mathbf{P}_k^3/\mu \cong \mathbf{P}_k^3(Q)$ (cf. [4], §1.2.2).

Let *m* be a positive integer such that $p \nmid m$. Let $A = (a_{ij})$ be a 4×4 matrix of integer entries satisfying the conditions

 $\begin{cases} (i) & a_{ij} > 0 \text{ and } p \nmid a_{ij} \text{ for every } (i,j) \\ (ii) & p \nmid \det A \\ (iii) & \sum_{j=0}^{3} q_j a_{ij} = m \text{ for } 0 \le i \le 3 \\ (iv) & \text{given } j, \ a_{ij} = 0 \text{ for some } i. \end{cases}$

We define a weighted Delsarte surface in $\mathbf{P}_k^3(Q)$ of degree m with matrix A (cf. [2], [9]) to be the surface

Communicated by K. Ueno, May 10, 1995, Revised December 20, 1995