The induced homomorphism of the Bott map on K-theory

Dedicated to Professor Yasutoshi Nomura on his 60th Birthday

By

Takashi WATANABE

1. Introduction

The original Bott map is a map from the unreduced suspension of a compact symmetric space into another compact symmetric space (see [5]). The complex K-theory of a compact symmetric space has been studied well (see [6], [12], [13] and [14]). The purpose of this paper is to describe the behavior of the homomorphism induced by the Bott map on complex K-theory.

Throughout this paper, G denotes a compact connected Lie group and σ an involutive automorphism of G. Then the fixed point set

$$G^{\sigma} = \{x \in G | \sigma(x) = x\}$$

of σ forms a closed subgroup of G. Let $(G^{\sigma})_1$ be its identity component and H a closed subgroup of G such that $(G^{\sigma})_1 \subset H \subset G^{\sigma}$. Then the pair (G, H) is called a compact symmetric pair, and the coset space G/H is called a compact symmetric space. If G is simply connected, then G^{σ} is connected, so $(G^{\sigma})_1 = G^{\sigma}$, and G/G^{σ} is simply connected. Conversely, every compact, simply connected symmetric space can be expressed as a homogeneous space of a simply connected group G. When G^{σ} is not connected and a coset space G^{σ}/H is under consideration, we will use $(G^{\sigma})_1$ instead of G^{σ} and abbreviate $(G^{\sigma})_1$ to G^{σ} unless otherwise stated.

Associated with a symmetric space G/G^{σ} , there is a fibre sequence

$$G^{\sigma} \xrightarrow{i} G \xrightarrow{\pi} G/G^{\sigma} \xrightarrow{j} BG^{\sigma} \xrightarrow{Bi} BG$$

and a map $\xi_{\sigma}: G/G^{\sigma} \to G$ defined by

$$\xi_{\sigma}(xG^{\sigma}) = x\sigma(x)^{-1}$$
 for $xG^{\sigma} \in G/G^{\sigma}$.

Let $\mathbf{x} = (x_1, ..., x_n) \in \mathbf{K}^n$ where $\mathbf{K} = \mathbf{R}$, \mathbf{C} or \mathbf{H} . An $n \times n$ matrix $A = (a_{ij}) \in M(n, \mathbf{K})$ with coefficients in \mathbf{K} acts on \mathbf{K}^n by $(A\mathbf{x})_i = \sum a_{ik} x_k$. Let $1 = I_n$ denote the $n \times n$ unit matrix and put

Communicated by Prof. A. Kono, September 20, 1995