Spectral decompositions of Berezin transformations on \mathbb{C}^n related to the natural U(n)-action

Dedicated to Professor Takeshi Hirai on his 60th birthday

By

Etsuro FUJITA and Takaaki NOMURA

Introduction

The Berezin transformation, which links the covariant symbol (the Berezin symbol) and the contravariant symbol (the symbol for a Toeplitz operator) of an operator A, plays an important role in Berezin's theory of quantization, see [4]. Let us begin the present paper with the definition of Berezin transformation. Consider a domain D in C^n and a Borel measure μ on D. Let \mathfrak{F} be a closed subspace of $L^2(D, d\mu)$ consisting of continuous functions and we denote by P the orthogonal projection $L^2(D, d\mu) \to \mathfrak{F}$. For each $\varphi \in L^{\infty}(D)$ we define the Toeplitz operator $T(\varphi)$ with symbol φ by $T(\varphi)h := P(\varphi h)$ $(h \in \mathfrak{F})$. We assume that \mathfrak{F} has a reproducing kernel κ (z, w). The Berezin symbol of a bounded operator A on \mathfrak{F} is the function $\sigma(A)$ on D given by

$$\sigma(A)(z) := \frac{(A \kappa(\cdot, z) | \kappa(\cdot, z))_{\mathfrak{F}}}{\kappa(z, z)}.$$

Then by [15, 1.19], the maps T and σ are adjoint to each other in a suitable sense. We will accordingly write σ^* for T. The Berezin transformation B associated to $\mathfrak F$ is, by definition, the positive selfadjoint operator $\sigma\sigma^*$, which turns out to be a bounded operator on $L^2(D,d\mu_0)$, where $d\mu_0:=\kappa(z,z)d\mu$. Moreover B is an integral operator with integral kernel given by $\frac{|\kappa(z,w)|^2}{\kappa(z,z)\kappa(w,w)}$, see [4] and [15].

When \mathfrak{F} carries an irreducible unitary representation of a Lie group G acting on D, the operator B is G-invariant, so that it is a very interesting problem to find its spectrum. In the case where $D = \mathbb{C}^n$, \mathfrak{F} the Fock space and G the Heisenberg group, one knows that B is expressed as the exponential of the euclidean Laplacian Δ on \mathbb{C}^n : $B = \exp(\Delta/4)$, see $[4, \S 4]$, [15, 1.27] and $[11, \S 1]$ etc. If D is the open unit disk \mathbf{D} in \mathbf{C} and if $\mathfrak{F} = \mathfrak{F}_{\alpha}(\alpha > -1)$ is the Hilbert space of holomorphic functions on \mathbf{D} which are square integrable rela-