Relative entropy and mixing properties of interacting particle systems

By

A. F. RAMIREZ and S. R. S. VARADHAN

1. Introduction

Consider a Markov semigroup S_t on a compact metric space X that has the Feller property. If we start the process with some initial distribution μ , then it is not always true that for large t the distribution $\mu_t = \mu S_t$ is close to an invariant distribution for the process. While any limit point as $T{\rightarrow}\infty$ of the time average $\frac{1}{T} \int_0^t \mu_t dt$ is always an invariant measure, the same can not be claimed for limit points of μ_t itself. The simplest examples are provided by deterministic flows. However for any Markov chain on a finite state space, continuous time rules out periodic behavior and μS_t has a limit as $t \rightarrow \infty$ and this is always an invariant measure.

The natural question that arises is to determine if under some suitable conditions on the Markov semigroup S_t one can still claim that all possible limit points of μS_t are invariant measures. Such a result in conjunction with a uniqueness theorem for invariant measures will establish the convergence of μS_t to the unique invariant measure giving us a mixing result.

It has been conjectured that in the context of interacting particle systems the answer is in the affirmative under some very mild restrictions. Let $X = F^{\alpha}$, where F is a finite set. The state η of the system is described by its values $\eta(x)$ for $x \in \mathbb{Z}^d$. The infinitesimal generator of the particle system is given by

$$
\Omega f(\eta) = \sum_{T \subset \mathbb{Z}^d} \int_{F^T} c_T \, (d\xi, \, \eta) \, (f(\eta^{\xi}) - f(\eta)) \tag{1}
$$

where the summation runs over all finite subsets of \mathbb{Z}^d . Here c_T (d ξ , η) describes the rates for Poisson events that change the current configuration η to a new configuration η^{ξ} that has been altered on the finite index set $T \subseteq \mathbf{Z}^{d}$ from η to ξ . A whole family of such Poisson events are taking place simultaneously and the infinitesimal generator reflects that. Of course a whole lot of these $c_T(\cdot,\cdot)$ may be 0. We say that a particle system has bounded flip rates if there is a bound on the sum of all the Poisson rates that could affect a loca-

Communicated by Prof. S. Watanabe, March 22,1996

Supported by NSF grant 9503419 and ARO grant DAAL03-92-G-0317