Cancellation of lattices and approximation properties of division algebras

By

Aiichi YAMASAKI

§0. Introduction

Let R be a Dedekind domain with the quotient field K. Let Λ be an R-order. In this general setting, it is proved in [3] that Roiter-Jacobinski type Divisibility Theorem holds for Λ -lattices. As a consequence, for a Λ -lattice L, the following two cancellation properties are equivalent.

(c) If L' is a local direct summand of $nL = L \oplus \cdots \oplus L$ for some $n \ge 0$, then $L \oplus L' \simeq M \oplus L'$ implies $L \simeq M$.

(c') If $L \oplus nL \simeq M \oplus nL$ for some $n \ge 0$, then $L \simeq M$.

As was pointed out in [3], putting $\Gamma := \operatorname{End}_A L$ and $B := K\Gamma$, there is an intimate connection between cancellation property and the approximation property of the group of Vaserstein $\widetilde{E}(\widehat{B})$ in the idele topology of \widehat{B}^{\times} , of which precise definitions will be recalled in §1.

Here we only indicate, $\widehat{R} := \prod R_p$, the direct product of *p*-adic completions over all maximal ideals of R, $\widehat{M} := M \otimes_R \widehat{R}$ for any *R*-alegbra *M*, and $\widetilde{E}(C) := \langle (1+xy) (1+yx)^{-1} | x, y \in C, 1+xy \in C^* \rangle$ for any ring $C \supseteq 1$. Our first remark is

Proposition 1 (proof in 1.5). The property (c') for L is equivalent with the following property (c'') of Γ .

 $(c'') \quad \widetilde{E}(\widehat{B}) \subset \widehat{\Gamma}^{\star}B^{\star} \text{ as subsets of } \widehat{B}^{\star}.$

0.1. We shall consider, for any finite dimensional K-algebra B, the following three approximation properties over R, in the idele topology of \widehat{B}^{\times} .

(a) Strong approximation property :

 $\widetilde{E}(B)$ is dense in $\widetilde{E}(\widehat{B})$

(a') B^{*} -approximation property :

 $\widetilde{E}(\widehat{B})$ is contained in the closure of B^{\star} .

(a") $\widehat{R}^{*}B^{*}$ -approximation property :

 $\widetilde{E}(\widehat{B})$ is contained in the closure of $\widehat{R}^{*}B^{*}$.

There are the obvious implications $(a) \Rightarrow (a') \Rightarrow (a'')$. Our second (rather

Received March 1, 1996

¹⁹⁹¹ Mathematics Subject Classification. 35R25, 35R30.