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1. Introduction

It is recently found that many complex reflection groups have deformation
of group algebras [A1], [AK], [BM]. For the group G (m, 1, n) in the
Shephard-Todd notation [C],[ST], the Hecke algebra #4 is the algebra over
the polynomial ring A =Z[v), ***, Un, ¢, ¢"'] defined by generators ai, ***, an
and relations

(ar—vy) - (@1—vm) =0, (a;i—q) (a;i+q") =0(2<i<n)
1020102 =A2010201, (L;a,-=a,-a,~(7'2i+2)
AiAi+10i = Ai410iA 541 (Zgign—l)

This algebra is known to be A-free. If we specialize it to v;=v;, ¢ =¢q, where
v, €EC, g€ C*, this algebra is denoted by X¢.

We note here that the study of this algebra over a ring of integers is con-
jecturely related to the modular representation theory for the block algebras
of the general linear group [BM].

One of the building blocks for the modular representation theory of K¢ is
the case that vy,***, v, are powers of ¢°# 1, and we consider this case in this
paper.

Let u, be the Grothendieck group of the category of K ¢-modules. We set
u= @u,. The purpose of this paper is to show that the graded dual of u is a
highest weight module of g (A.) (resp. g (4Y;)) if ¢* is not root of unity (resp.
a primitive r-th root of unity), and the dual basis of irreducible modules coin-
cides with canonical basis. The proof heavily depends on Lusztig's theory of
affine Hecke algebras and quantum groups, and Ginzburg's theory of affine
Hecke algebras.

For m =1, our result verifies a conjecture of [LLT]. Hence their conjectu-
ral algorithm actually computes the decomposition numbers of the Hecke
algebra of type A. We note here that there is an announcement of Grojnowski
[Gr] on the decomposition numbers of the Hecke algebra of type A, but what
we see here is that we can avoid the result at roots of unity to compute the de-
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