Adjoint action on homology mod 2 of E_8 on its loop space

By

Hiroaki HAMANAKA

1. Introduction

Assume G is a compact, connected, simply connected Lie group. The space of free loops on G is called LG(G) the free loop group of G, whose multiplication is defined as

$$\varphi \cdot \psi(t) = \varphi(t) \cdot \psi(t).$$

Let ΩG be the space of based loops on G, whose base point is the unit e. Then LG(G) has ΩG as its normal subgroup and

$$LG(G) / \Omega G \cong G$$
.

Identifying elements of G with constant maps from S^1 to G, LG(G) is equal to the semidirect product of G and ΩG . Thus the mod p homology of LG(G) is determined by the mod p homology of G and ΩG and the algebra structure of $\mathbf{H}_*(LG(G); \mathbf{Z}/p\mathbf{Z})$ depends on $\mathbf{H}_*(\mathrm{ad}; \mathbf{Z}/p\mathbf{Z})$ where

ad:
$$G \times \Omega G \rightarrow \Omega G$$

is the adjoint map.

In [4] some properties of ad* are studied and it is showed that H_* (ad; $\mathbb{Z}/p\mathbb{Z}$) is equal to $H_*(p_2; \mathbb{Z}/p\mathbb{Z})$ where p_2 is the second projection if and only if $H^*(G; \mathbb{Z})$ is p-torsin free. For an exceptional Lie group G, $H^*(G; \mathbb{Z})$ has p-torsion when

$$G = G_2, F_4, E_6, E_7, E_8$$
 for $p = 2$,
 $G = F_4, E_6, E_7, E_8$ for $p = 3$,
 $G = E_8$ for $p = 5$.

The case where p=2 and $G \neq E_8$ is discussed in [6] and the case of p=3, 5 is studied in [8, 7] respectively. In this paper we offer the result of the remained case, $(G, p) = (E_8, 2)$. The result is showed in Theorem 4. 1.

This paper is organized as follows. In §2 we refer to the result of the algebra structure of $\mathbf{H}^*(G; \mathbf{Z}/2\mathbf{Z})$ and $\mathbf{H}_*(\Omega G; \mathbf{Z}/2\mathbf{Z})$ and the Hopf algebra

Received January 18, 1996

Partially supported by JSPS research fellowship for young scientists.