A duality theorem in Hopf algebras and its application to Morava K-theory of $B\mathbf{Z}/p^r$

By

Kakhaber KORDZAYA and Goro NISHIDA

0. Introduction

Let $E^*()$ be a complex orientable theory. Then choosing an orientation class $x \in E^2(BS^1)$, we have an isomorphism $E^*(BS^1) \cong E_*[[x]]$, where E_* is the coefficient ring. Let N be a natural number and let $[N]x = x +_F \cdots +_F x$ (N times) be the N-sequence, where $x +_F y = F(x, y)$ is the formal group law of the theory E^* . Note that [N]x is the Euler class of the standard S^1 -bundle

$$S^1 \rightarrow B\mathbf{Z}/N \rightarrow BS^1$$

Therefore if [N] x is not a zero-divisor, from the Gysin sequence it follows that

$$E^*(B\mathbf{Z}/N) \cong E_*[[x]]/([N]x).$$

Suppose that $E^*(B\mathbf{Z}/N)$ is a finitely generated free E_* -module. Then

$$E^*(B\mathbf{Z}/N \times B\mathbf{Z}/N) \cong E^*(B\mathbf{Z}/N) \otimes_{E_*} E^*(B\mathbf{Z}/N)$$

and the product map $m : B\mathbf{Z}/N \times B\mathbf{Z}/N \rightarrow B\mathbf{Z}/N$ imduces a ring homomorphism

$$m^*: E^*(B\mathbf{Z}/N) \rightarrow E^*(B\mathbf{Z}/N) \otimes_{E_*} E^*(B\mathbf{Z}/N)$$

Thus $E^*(B\mathbb{Z}/N)$ is a bicommutative Hopf algebra over E_* and so is its dual

 $\hom_{E_*}(E^*(B\mathbf{Z}/N), E_*).$

In this paper we shall study a duality between the algebraic groups of such Hopf algebras and their duals. For typical application we consider the *p*-adic Morava K(n)-theory. Let $\overline{K(n)}^*()$ be the p-adic Morava K(n)-theory of period 2 so that the coefficient ring is

$$\overline{K(n)}_{*} = \mathbf{Z}_{p} [v_{n}, v_{n}^{-1}, t, t^{-1}] / (t^{p^{n-1}} - v_{n})$$

where deg t = 2 and \mathbf{Z}_{p} is the ring of p-adic integers. For a \mathbf{Z}_{p} -algebra R we define

Received December 14, 1995