A note on pluricanonical maps for varieties of dimension 4 and 5

By

Meng CHEN*

1. Introduction

Let X be a nonsingular projective variety of general type with dimension n defined over \mathbb{C} . The behavior of its pluricanonical map $\Phi_{|mK_X|}$ is of special interest to the classification theory. For $n \ge 3$, it remains open whether there is an absolute function m(n) such that $\Phi_{|mK_X|}$ is birational for $m \ge m(n)$. The simplest case to this problem is when X be a nonsingular minimal model. For $n \ge 4$, T. Matsusaka first proved the existence of m(n); K. Maehara presented a function m(n); T. Ando ([1]) got m(4) = 16 and m(5) = 29.

With I. Reider's results ([6]) and by improving T. Ando's method, we get the following effective result.

Theorem. Let X be a nonsingular projective variety of dimension $n \ge 4$ with nef and big canonical divisor K_X . Then there is a function m(n) such that $\Phi_{|mK_X|}$ is birational for $m \ge m(n)$, where $m(4) \le 12$ and $m(5) \le 18$.

Throughout this note, most of our notations and terminologies are standard except the following which we are in favour of:

- := definition;
- \sim_{lin} —— linear equivalence;
- \sim_{num} numerical equivalence.

2. The main theorem

We begin by introducing I. Reider's result at first.

Lemma 2.1 (Corollary 2 of [6]). Let S be an algebraic surface, L a nef and big divisor on S. Suppose $L^2 \ge 10$ and the rational map ϕ defined by $|L+K_S|$ is not birational, then S contains a base point free pencil E' with $L \cdot E' = 1$ or $L \cdot E' = 2$.

Communicated by Prof. K. Ueno, September 18, 1996

Revised February 25, 1997

^{*}Supported by NNSFC