A natural horseshoe-breaking family which has a period doubling bifurcation as the first bifurcation

Ву

Masayuki Asaoka

1. Introduction

Let $F: M \rightarrow M$ be a diffeomorphism on a manifold M. We say that F is C^r -structurally stable if there is a homeomorphism $h: M \rightarrow M$ which satisfies $h^{-1} \circ G \circ h = F$ for any diffeomorphism G near F in C^r -topology.

F is called *hyperbolic* on an F-invariant compact set Λ if there exist a splitting of the tangent bundle $TM|_{\Lambda}=E^u\oplus E^s$ and constants C>0 and $\lambda>1$ which satisfy that

$$||DF^{n}(v_{n})|| \ge C\lambda^{n}||v_{n}||$$
, $||DF^{-n}(v_{s})|| \ge C\lambda^{n}||v_{s}||$

for any $n \in \mathbb{N}$ and any $v_u \in E^u$, $v_s \in E^s$. We call F a hyperbolic diffeomorphism if the non-wandering set of F is hyperbolic.

The hyperbolicity and the stability are very important concepts in the research of dynamical systems and they are mutually related. For example, it is known that F is C^1 -structurally stable, if and only if F is hyperbolic and F has some additional conditions (e.g. [7] and [3]).

Smale's horseshoe [8] is a typical dynamical system which has the stability and the hyperbolicity, A horseshoe is defined as a planer diffeomorphism which maps D to F(D) as in Figure 1. and which is hyperbolic on $\Lambda = \bigcap_{n \in \mathbf{Z}} F^n(D)$. We call horseshoe diffeomorphism an affine horseshoe if it maps the rectangles A and B to A' and B' affinely.

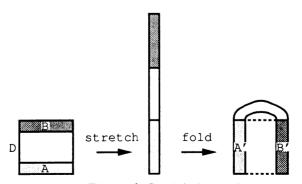


Figure 1: Smale's horseshoe