The mod 3 homology of the space of loops on the exceptional Lie groups and the adjoint action

By

Hiroaki Hamanaka* and Shin-ichiro Hara

1. Introduction

Let \(p \) be a prime number and \(G \) be a compact, connected, simply connected and simple Lie group. Let \(\Omega G \) be the loop space of \(G \). Bott showed \(H_\ast (\Omega G; \mathbb{Z}/p) \) is a finitely generated bicommutative Hopf algebra concentrated in even degrees, and determined it for classical groups \(G \) ([1]).

Here, let \(G \) be an exceptional Lie group, that is, \(G = G_2, F_4, E_6, E_7, E_8 \). In [2], K. Kozima and A. Kono determined \(H_\ast (\Omega G; \mathbb{Z}/2) \) as a Hopf algebra over \(\mathcal{A}_p \), where \(\mathcal{A}_p \) is the mod \(p \) Steenrod Algebra and acts on it dually.

Let \(\text{Ad} : G \times G \to G \) and \(\text{ad} : G \times \Omega G \to \Omega G \) be the adjoint actions of \(G \) on \(G \) and \(\Omega G \) respectively. In [3], the cohomology maps of these adjoint actions are studied and it is shown that \(H^\ast (\text{ad} ; \mathbb{Z}/p) = H^\ast (p_2 ; \mathbb{Z}/p) \) where \(p_2 \) is the second projection if and only if \(H^\ast (G ; \mathbb{Z}) \) is \(p \)-torsion free. For \(p = 2, 3 \) and \(5 \), some exceptional Lie groups have \(p \)-torsions on its homology. Moreover in [8, 9] mod \(p \) homology map of \(\text{ad} \) is determined for \((G, p) = (G_2, 2), (F_4, 2), (E_6, 2), (E_7, 2) \) and \((E_8, 5) \). This result is applied to compute the \(\mathcal{A}_5 \) module structure of \(H_\ast (\Omega E_6; \mathbb{Z}/5) \) and \(H_\ast (E_7; \mathbb{Z}/5) \) in [9].

For a compact and connected Lie group \(G \), the free loop group of \(G \) is denoted by \(LG (G) \), i.e. the space of free loops on \(G \) equipped with multiplication as

\[
\phi \cdot \psi (t) = \phi (t) \cdot \psi (t),
\]

and has \(\Omega G \) as its normal subgroup. Then

\[
LG (G) / \Omega G \cong G.
\]

and identifying elements of \(G \) with constant maps from \(S^1 \) to \(G \), \(LG (G) \) is equal to the semi-direct product of \(G \) and \(\Omega G \). This means that the homology of \(LG (G) \) is determined by the homology of \(G \) and \(\Omega G \) as module and the algebra structure of \(H_\ast (LG (G); \mathbb{Z}/p) \) depends on \(H_\ast (\text{ad} ; \mathbb{Z}/p) \) where

\[
\text{ad} : G \times \Omega G \to \Omega G
\]

Received September 3, 1996

*Partially supported by JSPS Research Fellowships for Young Scientists.