The mod 3 homology of the space of loops on the exceptional Lie groups and the adjoint action

By

Hiroaki HAMANAKA* and Shin-ichiro HARA

1. Introduction

Let p be a prime number and G be a compact, connected, simply connected and simple Lie group. Let ΩG be the loop space of G. Bott showed $H_*(\Omega G; Z/p)$ is a finitely generated bicommutative Hopf algebra concentrated in even degrees, and determined it for classical groups G ([1]).

Here, let G be an exceptional Lie group, that is, $G = G_2$, F_4 , E_6 , E_7 , E_8 . In [2], K. Kozima and A. Kono determined $H_*(\Omega G; \mathbb{Z}/2)$ as a Hopf algebra over \mathcal{A}_2 , where \mathcal{A}_p is the mod p Steenrod Algebra and acts on it dually.

Let $\operatorname{Ad}: G \times G \longrightarrow G$ and $\operatorname{ad}: G \times \Omega G \longrightarrow \Omega G$ be the adjoint actions of G on G and ΩG respectively. In [3], the cohomology maps of these adjoint actions are studied and it is shown that $H^*(ad; Z/p) = H^*(p_2; Z/p)$ where p_2 is the second projection if and only if $H^*(G; Z)$ is p-torsion free. For p=2, 3 and 5, some exceptional Lie groups have p-torsions on its homology. Moreover in [8, 9] mod p homology map of ad is determined for $(G, p) = (G_2, 2), (F_4, 2), (E_6, 2),$ $(E_7, 2)$ and $(E_8, 5)$. This result is applied to compute the \mathcal{A}_5 module structure of $H_*(\Omega E_8; Z/5)$ and $H^*(E_8; Z/5)$ in [9].

For a compact and connected Lie group G, the free loop group of G is denoted by LG (G), i. e. the space of free loops on G equipped with multiplication as

$$\boldsymbol{\phi} \boldsymbol{\cdot} \boldsymbol{\psi}(t) = \boldsymbol{\phi}(t) \boldsymbol{\cdot} \boldsymbol{\psi}(t),$$

and has ΩG as its normal subgroup. Then

$$LG(G)/\Omega G \cong G,$$

and identifying elements of G with constant maps from S^1 to G, LG(G) is equal to the semi-direct product of G and ΩG . This means that the homology of LG(G) is determined by the homology of G and ΩG as module and the algebra structure of $H_*(LG(G); \mathbb{Z}/p)$ depends on $H_*(ad; \mathbb{Z}/p)$ where

$$ad: G imes \Omega G
ightarrow \Omega G$$

Received September 3, 1996

^{*}Partially supported by JSPS Research Fellowships for Young Scientists.