Cyclic automorphic forms on a unitary group

By

Yuval Z. FLICKER

1. Statement of results

Let **C** be an algebraic subgroup of an algebraic group **G** over a global field *F*, and denote by $\phi: \mathbf{G}(F) \setminus \mathbf{G}(\mathcal{A}) \to \mathcal{C}$ a cusp form in the cuspidal representation π of the adele group $\mathbf{G}(\mathcal{A})$, where \mathcal{A} is the ring of *F*-adeles. Denote by **Z** the center of **G** and by $\omega = \omega_{\pi}: \mathbf{Z}(\mathcal{A}) / \mathbf{Z}(F) \to \mathcal{C}^{\times}$ the central character of π . Suppose that the homogeneous space $\mathbf{C}(F) \setminus \mathbf{C}(\mathcal{A})$ has finite volume; we call it a *cycle*. Fix a unitary character ξ of $\mathbf{C}(F) \setminus \mathbf{C}(\mathcal{A})$ in \mathcal{C}^{\times} . Signify by $P(\phi) = P_{\mathbf{C},\xi}(\phi) = \int_{\mathbf{C}(F) \setminus \mathbf{C}(\mathcal{A})} \phi(c) \overline{\xi}(c) dc$ the ξ -period of the form ϕ on the cycle $\mathbf{C}(F) \setminus \mathbf{C}(\mathcal{A})$ of $\mathbf{G}(F) \setminus \mathbf{G}(\mathcal{A})$. Here $\overline{\xi}(c)$ is the complex conjugate of $\xi(c)$. We simply say "period" when $\xi = 1$.

Motivated for example by classical questions on the L^2 -cohomology of bounded symmetric spaces of the form $\Gamma \setminus G/C$, we wish to determine the ξ -cyclie cuspidal $\mathbf{G}(\mathcal{A})$ -modules π ; these are the cuspidal π for which there is a form $\phi \in \pi \subset L^2_{\omega}(\mathbf{G}(F) \setminus \mathbf{G}(\mathcal{A}))$ with a non-zero ξ -period $P(\phi)$ (or $P_{C,\xi}(\phi)$ if the dependence on \mathbf{C} and ξ needs to be made explicit). The interesting phenomenon which occurs in this context is, that in order to by cyclic, a global representation needs—in addition to being locally cyclic at all places to overcome a purely global obstruction.

Such a question was studied first by Waldspurger [W1,2] when $\mathbf{G} = PGL(2) = SO(3)$ and $\mathbf{C} = SO(2)$ (= elliptic torus of \mathbf{G} which splits over a quadratic extension of the base field) on using the Weil representation, then by Harder-Langlands-Rapoport [HLR] when \mathbf{G} is GL(2) over a quadratic extension E of F and \mathbf{C} is GL(2) over F, and then by Jacquet-Lai [JL] and Jacquet [J1,2] who introduced a "relative trace formula". The case of $\mathbf{G} = SO(4) \times SO(3)$ and $\mathbf{C} = SO(3)$ (and ξ is a form in a cuspidal, not one-dimensional, automorphic representation of $\mathbf{C}(\mathcal{A})$), was studied by (D. Prasad [P1,2] locally and) Harris-Kudla [HK], again on using the Weil representation. The analogue of the trace formula technique was later used in a series of cases, where $\mathbf{G} = GL(2, E)$ [F5], or where $\mathbf{G} = GL(n, E)$ [F6], and $\mathbf{C} = GL(n, F)$, with E/F being a quadratic extension of global (or local) fields. This last case is related to base-change for the unitary group—which is related

Communicated by Prof. K. Ueno, March 18, 1996