Remarks on L² -wellposed Cauchy problem for some dispersive equations

By

Shigeo TARAMA

1. Introduction and results

We consider the Cauchy problem with data on line $t = 0$ for the following operator A defind by

$$
Au(t, x) = \frac{\partial}{\partial t}u(t, x) + \frac{\partial^3}{\partial x^3}u(t, x) + a(x)\frac{\partial}{\partial x}u(t, x) + b(x)u(t, x) \quad (1.1)
$$

with the complex-valued coeffcients $a(x)$ and $b(x)$ belonging to the space B^{∞} consisting of all bounded smooth functions whose derivative of any order is also bounded on real line **R.**

If the coefficients $a(x)$ and $b(x)$ are constant, we see by Fourier transformation that, when the imaginary part of the coefficent $a(x)$ is not zero, the Cauchy problem for A is not L^2 -wellposed.

This implies that the Cauchy problem for A is not always L^2 -wellposed. Indeed we see by the construction of asymptotic solutions that the following condition on the imaginary part of the coefficent $a(x)$, which is denoted by $a_1(x)$: there exists a constant *K* such that we have for any *x* and $y \in \mathbb{R}$

$$
\left| \int_{x}^{y} a_{I}(s) ds \right| \leq K |x - y|^{2}
$$
 (N)

is necessary for L^2 -wellosedness.

Our main interest is the sufficiency of (N) . We show in this paper that the condition (N) implies L^2 -wellposedness.

Now we formulate the Cauchy problem. Let T be some given positive number. For given functions $g(x)$ and $f(t, x)$ find a solution $u(t, x)$ satisfying

$$
\begin{cases} Au(t, x) = f(t, x) & \text{on } [0, T] \times \mathbf{R} \\ u(0, x) = g(x) & \text{on } \mathbf{R} \end{cases}
$$
 (C)

Let *X* be a subspace of the space of temperate distributions on **R**. We say that the above problem (C) is X-wellposed if for any $g(x) \in X$ and $f(t, x)$

Received March 4,1997