Absence of diffusion near the bottom of the spectrum for a random Schrödinger operator on $L^2(\mathbb{R}^3)$

By

Yuji Nomura

1. Introduction

Let (Ω, F, P) be a probability space whose precise definition will be given later. For each $\omega \in \Omega$, we consider Anderson type random Schrödinger operator on $L^2(\mathbb{R}^3)$:

(1.1)
$$\begin{cases} H_{\omega} = -\Delta + V_{\omega}(x), \\ V_{\omega}(x) = \sum_{i \in \mathbb{Z}^{q_i}} (\omega) f(x-i) \end{cases}$$

where $\Delta = \sum_{j=1}^{3} \frac{\partial^2}{\partial x_j^2}$. $\{q_i\}_{i \in \mathbb{Z}^3}$ satisty

(H.1) $\{q_i\}_{i \in \mathbb{Z}^3}$ are real-valued independent identically distributed random variables on (Ω, F, P) with uniform distribution on [0, 1].

We suppose the following conditions:

- (H.2) There exist two positive numbers η_0 and η_1 such that $\eta_0 \le f(x) \le \eta_1$ for $x \in [0, 1)^3$,
- (H.3) $x \notin [0, 1)^3 \Longrightarrow f(x) = 0.$

 H_{ω} is considered to be the operator corresponding to the Hamiltonian of the electron in random metalic media. Let $\sigma(H_{\omega})$ denote the spectrum of H_{ω} . Then the following is a known fact.

Proposition 1.1. (Kirsch and Martinelli).

$$\sigma(H_{\omega}) = [0, \infty) \ a.s.$$

For E > 0, we shall mean by g_E an arbitrary real-valued function which satisfies the following condition:

(A) $g_E \in C_0^{\infty}(\mathbf{R})$ and supp $g_E \subset (0, E)$,

where $C_0^{\infty}(O) = \{f \in C^{\infty}(O) | \operatorname{supp} f \subset O\}$ for an open set $O \subset \mathbb{R}^n$.

In this paper we are interested in the following quantity:

(1.2)
$$r_E^2(t) = E\left[\int_{R^3} |x|^2 |e^{-itH\omega}g_E(H_\omega) \psi(x)|^2 dx\right]$$

Communicated by Prof. N. Iwasaki, October 23, 1996