Projective elements in *K***-theory and self maps of** $\sum CP^{\infty}$

By

Kaoru Morisugi

1. Introduction and statements of results

In this paper, we will work in the homotopy category of based spaces and based maps. Given a space X, we denote the reduced K-theory by K(X) and the homology group of integral coefficients by $H_*(X)$. Let CP^{∞} be the infinite dimensional complex projective space. Let η be the canonical line bundle over CP^{∞} and i: $CP^{\infty} \rightarrow BU$ be the classifying map of the virtual bundle $\eta - 1$. Since BU has a loop space structure which is derived from the Whitney sum of complex vector bundles, there exists a unique extension of i to the loop map $j: \Omega \sum CP^{\infty} \rightarrow BU$.

In this paper we investigate the following problems:

Given an element $\alpha \in K(X)$, when does there exist a lift $\widehat{\alpha} \in [X, \Omega \sum CP^{\infty}]$ such that $j_*(\widehat{\alpha}) = \alpha$? If α has a lift, how we can construct the lift $\widehat{\alpha}$?

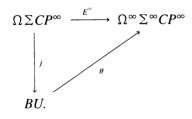
Define

$$PK(X) = \{ \alpha \in K(X) \mid \exists \ \widehat{\alpha} \in [X, \Omega \sum CP^{\infty}] \text{ such that } j_*(\widehat{\alpha}) = \alpha \}.$$

If an element $\alpha \in K(X)$ belongs to PK(X), we call that α is projective.

The significance of the above problem is as follows:

The James splitting theorem [2] implies that there exists a loop map $\theta: BU \rightarrow \Omega^{\infty} \sum^{\infty} CP^{\infty}$ such that the following diagram commutes:



Therefore, given an element $\alpha \in K(X)$, we have the stable map, $adj.(\theta(\alpha)): \Sigma^{\infty}X \rightarrow \Sigma^{\infty}CP^{\infty}$. Using the information of K(X), we can calculate the induced homomorphism [3], [4] of $adj.(\theta(\alpha))_*: H_*(X) \rightarrow H_*(CP^{\infty})$. If α has a lift $\hat{\alpha}$, then this implies that the stable map $adj.(\theta(\alpha))$ and its induced

Communicated by Prof. A. Kono, March 21, 1997