A generalization of the parallelogram equality in normed spaces

By

Pavle M. Miličić

Let $(X, \|\cdot\|)$ be a real normed space. Then on X^2 there always exist the functionals:

$$\tau_{\pm}(x, y) := \lim_{t \to +0} t^{-1} (\|x + ty\| - \|x\|) \qquad (x, y \in X). \tag{1}$$

$$\tau_{\pm}(x, y) := \lim_{t \to \pm 0} t^{-1}(\|x + ty\| - \|x\|) \qquad (x, y \in X).$$

$$g(x, y) := \frac{\|x\|}{2} (\tau_{-}(x, y) + \tau_{+}(x, y)) \qquad (x, y \in X)^{1}.$$
(2)

The functional g is a natural generalization of the inner product (\cdot, \cdot) . which follows from its properties:

$$g(x, x) = ||x||^2 \qquad (x \in X). \tag{3}$$

$$g(\alpha x, \beta y) = \alpha \beta g(x, y) \qquad (x, y \in X; \alpha, \beta \in R), \tag{4}$$

$$g(x, x+y) = ||x||^2 + g(x, y)$$
 $(x, y \in X),$ (5)

$$|g(x, y)| \le ||x|| ||y|| \quad (x, y \in X),$$
 (6)

 $(X, \|\cdot\|)$ is an inner product space if and only if g(x, y) is an inner product of vectors x and y, for all $x, y \in X$. (7)

By use of the functional g, we may define many geometrical points in normed spaces (angle between two vectors, the projection of the vector x on the vector y, many types of orthogonalities, orthonormal system, and so on) (cf.[2] to [5]).

In an inner product space X the equality

$$||x+y||^4 - ||x-y||^4 = 8(||x||^2 + ||y||^2)(x, y)$$
 $(x, y \in X)$ (8)

holds, which is equivalent to the parallelogram equality

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$$
 $(x, y \in X)$. (9)

In normed spaces, the equality

$$\|x+y\|^4 - \|x-y\|^4 = 8\left(\|x\|^2 g\left(x,\,y\right) + \|y\|^2 g\left(y,\,x\right)\right), \qquad (x,\,y \in X) \quad (10)$$

is a generalization of the equality (8).

Communicated by Prof. K. Ueno, November 12, 1996 Revised September 10, 1997

¹⁾ The notation g is according to the name Gâteaux.