On explicit constructions of rational elliptic surfaces with multiple fibers

By
Yoshio Fuimoto

This note is a supplement to our previous paper [F], where I studied the basic property of rational elliptic surfaces with multiple fibers S through the logarithmic transformations. It is also a nine-points-blowing-up of \mathbf{P}^{2}, but any (-1)-curve is a multi-section of its elliptic fibering over \mathbf{P}^{1}. If the nine points $P_{i}(1 \leq i \leq 9)$ on \mathbf{P}^{2}, which are the center of blowing-ups, are mutually distinct and the multiple fiber is of type ${ }_{m} I_{0}$, it is obtained from the pencil generated by m-fold cubic which passes through p_{i} 's and an irreducible curve of degree $3 m$ which has an ordinary singularity of multiplicity m at each p_{i} and is non-singular outside them. And the anti-pluricanonical map $\Phi_{\left|-m K_{s}\right|}: S \rightarrow \mathbf{P}^{1}$ gives the unique structure of an elliptic fibration. Such a pencil (called Halphen pencil) already appeared in [Nag], §4, Theorem (1), case (\wedge), when Nagata constructed a rational surface with infinitely many (-1)-curves. Also Hironaka and Matsumura [$\mathrm{H}-\mathrm{M}$] applied it to construct examples of a curve C in a smooth projective surface F, where C satisfies $G 1$ conditions in F, but not $G 2$ conditions. On the other hand, when part of the nine points p_{i} 's on \mathbf{P}^{2} are infinitely near, the Halphen pencil degenerates into a more complicated one. Any (-1)-curve e on S is an m-sheeted covering of the base curve \mathbf{P}^{1}, branching over the point where the multiple fiber lie with the ramification index m. Hence, it is not at all easy to find nine (-1)-curves on S, see how they intersect the irreducible components of each singular fiber and repeat blowingdowns to \mathbf{P}^{2}.

Here, we shall describe an explicit construction of rational elliptic surfaces with multiple fibers through the 'Halphen transform' in the sense of [H-L], which is some kind of birational transformations.

We recall the following result.
Theorem (A) ([F], [H-L]). Let C be a non-singular cubic (resp. a nodal cubic) in \mathbf{P}^{2} with the fixed inflexion point Q on C such that C should be given the natural group structure with Q as the identity. Take nine points $p_{i}(1 \leq i \leq 9)$ on C (which may be infinitely near) and let S be the surface obtained by blowing up \mathbf{P}^{2} at p_{i} 's $(1 \leq i \leq 9)$. Then S has the structure of an elliptic surface with one multiple fiber of multiplicity m if and only if $\sum_{i=1}^{9} p_{i}$ is of order m in the elliptic curve (resp.

[^0]
[^0]: Communicated by K. Ueno, September 22, 1997

