Some categories of lattices associated to a central idempotent

By

Osamu Iyama

0. Let R be a noetherian integral domain with field of quotients K. An R-lattice is a finitely generated torsion free R-module. An R-order is an R-algebra Λ which is an R-lattice. For an R-order Λ , a Λ -lattice is a left Λ -module which is an R-lattice. Let lat Λ denote the category of Λ -lattices.

Let e be a central idempotent of the K-algebra $\tilde{A} := K \otimes_R \Lambda$, so that $e\Lambda$ is an R-order in the K-algebra $e\tilde{\Lambda}$. The category lat $e\Lambda$ can be viewed as a full subcategory of lat Λ via the ring homomorphism $\Lambda \to e\Lambda$, $(\lambda \mapsto e\lambda)$.

0.0. A purpose of this paper is to investigate the *quotient category* $\mathscr{C} := \operatorname{lat} \Lambda/\operatorname{lat} e\Lambda$. By definition, \mathscr{C} has the same objects as $\operatorname{lat} \Lambda$, and $\operatorname{Hom}_{\mathscr{C}}(X,Y) = \operatorname{Hom}_{\Lambda}(X,Y)/I(X,Y)$, where I(X,Y) is the totality of Λ -morphisms $f:X \to Y$ which factor through some object of $\operatorname{lat} e\Lambda$. By 2.1.1, $\operatorname{Hom}_{\mathscr{C}}(X,Y) = (1-e) \operatorname{Hom}_{\Lambda}(X,Y)$ holds.

Let \mathscr{P} be the full subcategory of \mathscr{C} formed by $X \in \mathscr{C}$ satisfying the following condition (*).

- (*) There exist a projective Λ -lattice P, $e\Lambda$ -lattice Ω and an exact sequence $0 \to \Omega \to P \to X \to 0$ in lat Λ .
- **0.1. Theorem** (Proof in 2.5). Assume that \mathscr{P} has an additive generator Q (i.e. any object in \mathscr{P} is isomorphic to a direct summand of $Q^n = Q \oplus \cdots \oplus Q$ for some n). Put $\Gamma := \operatorname{Hom}_{\mathscr{C}}(Q, Q)$, $FX := \operatorname{Hom}_{\mathscr{C}}(Q, X)$ for $X \in \operatorname{lat} \Lambda$. Then Γ is an R-order and F induces a categorical equivalence from $\mathscr{C} = \operatorname{lat} \Lambda/\operatorname{lat} e\Lambda$ to $\operatorname{lat} \Gamma$.
- **0.2.** Assume that R is a complete discrete valuation ring. Then lat Λ is a Krull-Schmidt category, and any $X \in \operatorname{lat} \Lambda$ has a projective cover $0 \to \Omega(X) \to P(X) \to X \to 0$. In this case, the above $\mathscr P$ can be described as $\{X \in \mathscr C \mid \Omega(X) \in \operatorname{lat} e\Lambda\}$.

Let ind Λ denote the set of isomorphism classes of indecomposable Λ -lattices and put

$$\mathcal{Q} := \{ X \in \operatorname{ind} \Lambda - \operatorname{ind} e \Lambda \mid \Omega(X) \in \operatorname{lat} e \Lambda \}.$$

If $\mathscr Q$ is a finite set, by the additivity of projective cover, $\mathscr P$ has an additive generator $Q=\bigoplus_{X\in\mathscr Q} X$.