1-cocycles on the group of diffeomorphisms

By

Hiroaki Shimomura

§1. Introduction

Let M be a d-dimensional paracompact C^{∞} -manifold and Diff(M) be the group of all C^{∞} -diffeomorphisms on M. Among the subgroups of Diff(M), we take here the group $\text{Diff}_0(M)$ which consists of all $g \in \text{Diff}(M)$ with compact supports, that is the set $\{P \in M | g(P) \neq P\}$ is relatively compact. Up to the present time, unitary representations (U, \mathcal{H}) of $\text{Diff}_0(M)$ or of its subgroups (\mathcal{H}) is the representation Hilbert space of U) are constructed and considered by many authors, for example [4], [5], [6], [7], [8], [9], [10], [12] and [19]. The first purpose of this paper is a trial to construct some differentiable method to analyze these representations (U, \mathcal{H}) of Diff₀(M) or of its subgroups. Roughly speaking, we wish to consider a differential representation of a given one. So the first step we should do is to define a suitable Lie algebra \mathscr{G}_0 of Diff₀(M), regarding it as an infinite dimensional Lie group. For the case of compact manifold, it is well known for a pretty long time ago that $\text{Diff}(M) = \text{Diff}_0(M)$ is an infinite dimensional Lie group whose modelled space is a Fréchet space called strong inductive limit of Hilbert spaces by a few authors. (cf $\lceil 13 \rceil$). So after them, we are naturally derived that we should take the set $\Gamma_0(M)$ of all C^{∞} -vector fields X with compact supports as the Lie algebra \mathscr{G}_0 , and it is appropriate to take the map Exp(X) as the exponential map exp from $\Gamma_0(M)$ to $\text{Diff}_0(M)$, where $\{\text{Exp}(tX)\}_{t \in \mathbf{R}}$ is the 1-parameter transformation group generated by $X \in \Gamma_0(M)$. Thus formally we have self adjoint operators dU(X) on \mathscr{H} by Stone's result,

$$U(\operatorname{Exp}(tX)) = \exp(\sqrt{-1}tdU(X)),$$

and simultaneouly there arise many problems for such dU(X) and for Exp maps. Among them the following questions are fundamental.

(1) Does $\sqrt{-1}dU$ become a linear representation under suitable restrictions of the domain of each dU(X)?

(2) Is the common domain of $\{dU(X)\}_{X \in \Gamma_0(M)}$ rich such one like Gårding space?

(3) Is the subgroup generated by Exp(X), $X \in \Gamma_0(M)$ dense in $\text{Diff}_0(M)$?

It is easily expected that the linearity of $\sqrt{-1}dU$ mostly depends on the usual

Communicated by Prof. T. Hirai, November 21, 1997

Revised April 15, 1998