On the mod 3 homotopy type of the classifying space of a central product of SU(3)'s

By

Antonio VIRUEL

1. Introduction

Let SU(3) be the compact Lie group of special unitary complex matrices of order 3. It is well known that the center of SU(3), namely Γ , is isomorphic to $\mathbb{Z}/3$ and it is generated by the matrix (ω, ω, ω) where $\omega \in \mathbb{C}$ such that $\omega^3 = 1$ and $\omega \neq 1$. The compact Lie group SU(3,3) is defined as the central product $SU(3) \times_{\mathbb{Z}/3} SU(3)$, i.e., as the quotient

$$SU(3,3) = SU(3) \times SU(3)/\Delta$$

where Δ is the subgroup of $SU(3) \times SU(3)$ generated by the elements (A,A) such that $A \in \Gamma$.

The group SU(3,3) plays an important role when studying the homotopy type of the classifying space of the exceptional compact Lie group of rank 4, F_4 , at primes greater than 3 (see [17] and [6]), and specially at the prime 3 (see [21]). This justify a deep study of the structure of SU(3,3), as well as those of its classifying space BSU(3,3), at the prime 3.

Our first result describes the mod 3 cohomology of SU(3,3) as Hopf algebra.

Theorem 1.1. $H^*SU(3,3) = \mathbf{F}_3[y_2]/y_2^3 \otimes A_{\mathbf{F}_3}(x_1,x_3,x_3',x_5)$, where subindex indicates degree. Moreover, the Hopf algebra structure is given by the reduced diagonal map

а	x_1	<i>x</i> ₃	x_3'	<i>x</i> ₅	y_2
$\overline{\phi}(a)$	0	$y_2 \otimes x_1$	$y_2 \otimes x_1$	$y_2\otimes(x_3'-x_3)$	0

Proof. See Section 3.

Then we calculate the mod 3 cohomology of the classifying space of SU(3,3), BSU(3,3).

The author is partially supported by DGES grant PB97-1095. Communicated by Prof. K. Ueno, February 23, 1998 Revised November 30, 1998