Generating elements for B_{dR}^+

By

Adrian Iovita and Alexandru ZAHARESCU

Introduction

Let us fix a prime number p. Then B_{dR}^+ denotes the ring of p-adic periods of algebraic varieties defined over local (p-adic) fields as considered by J.-M. Fontaine in [Fo]. It is a topological local ring with residue field C_p (see the section Notations) and it is endowed with a canonical, continuous action of $G := \text{Gal}(\bar{\mathbf{Q}}_p/\mathbf{Q}_p)$, where $\bar{\mathbf{Q}}_p$ is the algebraic closure of \mathbf{Q}_p in C_p . Let us denote by I its maximal ideal and $B_n := B_{dR}^+/I^n$. Then B_{dR}^+ (and B_n for each $n \ge 1$) is canonically a $\bar{\mathbf{Q}}_p$ -algebra and moreover $\bar{\mathbf{Q}}_p$ is dense in B_{dR}^+ (and in each B_n respectively) if we consider the "canonical topology" on B_{dR}^+ which is finer than the I-adic topology.

Let now *L* be any algebraic extension of \mathbf{Q}_p contained in $\overline{\mathbf{Q}}_p$ and $G_L := \operatorname{Gal}(\overline{\mathbf{Q}}_p/L)$. In [I-Z], the authors described all the algebraic extensions of $K := \mathbf{Q}_p^{ur}$ such that *L* is dense in $(B_n)^{G_L}$ for some *n* or in $(B_{dR}^+)^{G_L}$. Let us formulate this problem in a different way. For two commutative topological rings $A \subset B$, a subset $M \subset B$ will be called a "generating set" if A[M] is dense in *B*.

Definition 0.1. Let $A \subset B$ be commutative topological rings, then we define "the generating degree", $gdeg(B/A) \in \mathbb{N} \cup \infty$ to be

 $gdeg(B/A) := min\{|M|, where M \text{ is a generating set of } B/A\}$

where |M| denotes the number of elements of M if M is finite and ∞ if M is not finite.

Then the problem Is L dense in $(B_{dR}^+)^{G_L}$? can be formulated as Is $gdeg((B_{dR}^+)^{G_L}/L)$ zero? For example Theorem 0.1 of [I-Z] can be restated as:

Theorem 0.1. If L is not a deeply ramified extension of K then

$$gdeg((B_n)^{G_L}/L) = 0$$
 for all *n* and $gdeg(B_{dR}^+)^{G_L}/L) = 0$.

A characterization of deeply ramified extensions L of K satisfying $gdeg((B_{dR}^+)^{G_L}/L) = 0$ is obtained in [I-Z], Theorem 0.2. As not all deeply ramified extensions of K have this nice property, [I-Z] left open the problem of describing $(B_n)^{G_L}$ for all n and $(B_{dR}^+)^{G_L}$, for a general deeply ramified extension L. The first part of this paper (section 2) supplies such a description, namely we prove

Communicated by Prof. K. Ueno, November 25, 1997

Revised September 22, 1998