Self homotopy group of the exceptional Lie group G_2

By

Hideaki Ōshima*

1. Introduction

Let G be a connected Lie group and $\mu: G \times G \to G$ the multiplication of G. For any space A with a base point, the based homotopy set [A, G] becomes a group with respect to the binary operation $\mu_{\star}: [A, G] \times [A, G] = [A, G \times G] \to [A, G]$. Even if A is a simple space such as the sphere, it is difficult to calculate the group [A, G]. A general result was given by Whitehead (p. 464 of [10]):

(1.1)
$$\operatorname{nil}[A,G] \leq \operatorname{cat} A,$$

where nil and cat denote the nilpotency class and the Lusternik-Schnirelmann category with $cat\{*\}=0$, respectively. In [5], we determined the group structure of [G, G] and proved nil[G, G] = 2 when G is SU(3) or Sp(2). We want to study nil[G, G] for other G's. Though we have very few results, it seems reasonable to set the following:

Conjecture 1.1 If G is simple, then $nil[G,G] \ge rankG$.

A weaker one is

Conjecture 1.2. If G is simple and rank $G \ge 2$, then nil $[G, G] \ge 2$, that is, [G, G] is not commutative.

Let G_2 be the exceptional Lie group of rank 2. Then the purpose of this note is to prove the following which supports 1.1.

Theorem 1.3. $nil[G_2, G_2] = 3.$

Two conjectures are false in general without the assumption of simpleness of G.

Example 1.4. (1). $\operatorname{nil}[S^3 \times S^1, S^3 \times S^1] = 1$ and $\operatorname{nil}[U(2), U(2)] = 2$. Notice that $S^3 \times S^1$ and U(2) are homeomorphic but not isomorphic.

(2). If $G = S^3 \times \cdots \times S^3$ (*n* times), then rank G = n and nil[G, G] equals 3 if $n \ge 3$

^{*} Supported by Grant-in-Aid for Scientific Research (C) 10640087 Communicated by Prof. G. Nishida, July 13, 1999