Removable singularities for semilinear degenerate elliptic equations and its application

Dedicated to Professor Norio Shimakura on the occasion of his sixtieth birthday

By

Toshio Horiuchi

0. Introduction

Let $N \ge 1$ and p > 1. Let Ω be a bounded open set with smooth boundary and F be a compact set satisfying $F \subset \Omega \subset \mathbb{R}^N$. We also set $\Omega' = \Omega \setminus \partial F$, where $\partial F = F \setminus \text{Int } F$. We assume that the measure of ∂F is zero. Define

$$(0-1) P = -\operatorname{div}(A(x)\nabla \cdot),$$

where $A(x) \in C^1(\Omega')$ is positive in $\Omega \setminus F$ and vanishes in Int F. First we shall consider removable singularities of solutions for degenerate semilinear elliptic equations. Assume that $u \in C^0(\Omega') \cap C^2(\Omega \setminus F)$ satisfies the differential inequality

$$(0-2) Pu + B(x)Q(u) \le C(x), \text{in } \Omega',$$

for some nonnegative functions B(x) and C(x). Here Q(t) is continuous and strictly monotone increasing on R satisfying the growth condition (1-6). For instance we can adopt $|t|^{p-1}t$ with p>1 and $(e^{|t|}-1)\operatorname{sgn}(t)$ for Q(t). Then we shall show under some additional conditions on A(x), B(x), C(x) and Q(t) that

$$\limsup_{x\to \partial F} u(x) < +\infty.$$

From this result we can deduce that if $u \in C^0(\Omega') \cap C^2(\Omega \setminus F)$ satisfies

$$(0-4) Pu + B(x)Q(u) = f(x), in \Omega'$$

for $f/B \in L^{\infty}(\Omega)$, then there is a bounded function in Ω which coincides with u in $\Omega' = \Omega \setminus \partial F$.

This result was established by H. Brezis and L. Veron, under the assumptions that F consists of finite points, $Q(t) = |t|^{p-1}t$ and A(x), B(x), C(x) are positive constants. More precisely they proved in [BV] that if u satisfies (0-2) with some

Communicated by Prof. N. Iwasaki, February 19, 1998 Revised April 21, 1999