The Atkin inner product for $\Gamma_0(N)$

By

Hiroyuki TSUTSUMI

1. Introduction

Let \mathfrak{H} be the complex upper half plane and \mathcal{M} the \mathbb{C} -vector space of $SL_2(\mathbb{Z})$ -invariant functions which are holomorphic on \mathfrak{H} and meromorphic at $i\infty$. The space \mathcal{M} can be identified with the polynomial ring $\mathbb{C}[j]$ via $j = j(\tau)$, where $j(\tau)$ is the elliptic modular invariant:

$$j(\tau) = \frac{1}{q} + 744 + 196884q + 21493760q^2 + 864299970q^3 + \dots, \quad q = e^{2\pi i \tau}.$$

On the space \mathcal{M} act the Hecke operators $\{T_n\}_{n\in\mathbb{N}}$, and on $\mathbb{C}[j]$ too, through the above identification.

A.O.L Atkin defined an inner product (,) on ${\mathcal M}$ by

 $(f, g) = \text{constant term of } f \cdot g E_2 \text{ as Laurent series in } q = e^{2\pi i \tau},$

where $E_2(\tau)$ is the Eisenstein series of weight 2 for $SL_2(\mathbb{Z})$:

$$E_2(\tau) = 1 - 24 \sum_{m=1}^{\infty} \left(\sum_{d|m} d \right) q^m.$$

Atkin showed:

1. The Hecke operators T_n are self-adjoint with respect to this inner product;

$$(f|T_n, g) = (f, g|T_n), \quad \forall f, g \in \mathcal{M}, \forall n \ge 1.$$

 The inner product is non-degenerate and the associated orthogonal polynomials are connected to the *j*-invariants of supersingular elliptic curves. (For precise statement, see the article [5].)

¹⁹⁹¹ Mathematics Subject Classification(s). 11F03,11F11,11F25, Communicated by prof. K. Ueno, October 5, 1999