On a Certain Extended Galois Action on the Space of Arithmetic Modular Forms with respect to a Unitary Group

By

Atsuo Yamauchi

Introduction

In his work [8, Theorem 1.5], G. Shimura proved the existence of a certain Galois action on the graded ring of Hilbert modular forms. A holomorphic Hilbert modular form f with respect to SL(2, F) (where F is a totally real algebraic number field of finite degree) can be expressed as a Fourier series of complex variables u_1, \ldots, u_l

(0.1)
$$f(u_1, \dots, u_l) = \sum_x c_x \exp\left(2\pi\sqrt{-1}\sum_{\mu=1}^l x_\mu u_\mu\right),$$

where the coefficients $c_x \in \mathbb{C}$ and x runs over a lattice. It is shown first that, for any $\sigma \in \operatorname{Aut}(\mathbb{C})$, there exists a holomorphic modular form f^{σ} whose Fourier expansion is

(0.2)
$$f^{\sigma}(u_1, \dots, u_l) = \sum_x c_x^{\sigma} \exp\left(2\pi\sqrt{-1}\sum_{\mu=1}^l x_{\mu}u_{\mu}\right).$$

A Hilbert modular form with respect to $\operatorname{SL}(2, F)$ has the weight in $\sum_{v \in \mathbf{a}} \mathbb{Z} \cdot v$, where \mathbf{a} is the set of all embeddings of F into \mathbb{R} . If f is of weight $k = \sum_{v \in \mathbf{a}} k_v \cdot v$, then f^{σ} is of weight $k^{\sigma} = \sum_{v \in \mathbf{a}} k_v \cdot v\sigma$. It is also shown that, there exists a certain closed subgroup \mathfrak{G} of $\operatorname{GL}(2, F_A) \times \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ which acts on the graded ring of meromorphic Hilbert modular forms which can be expressed as a quotient of holomorphic Hilbert modular forms with $\overline{\mathbb{Q}}$ -rational Fourier coefficients. An important aspect here is that the action of \mathfrak{G} on Hilbert modular forms of weight 0 coincides with that of \mathfrak{G} in the theory of canonical models constructed in [2].

In this paper we shall study such a Galois action on modular forms in the case of unitary groups. On unitary groups, modular forms have no Fourier

Communicated by Prof. H. Yoshida, December 7, 1999