3-graded decompositions of exceptional Lie algebras \mathfrak{g} and group realizations of $\mathfrak{g}_{ev}, \mathfrak{g}_0$ and \mathfrak{g}_{ed} Part I, $G = G_2, F_4, E_6$

By

Ichiro Yokota

The ν -graded decomposition of simple Lie algebras $\mathfrak{g}, \mathfrak{g} = \sum_{k=-\nu}^{\nu} \mathfrak{g}_k, [\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$, has been studied by many mathematicians. Firstly the case of $\nu = 1$ was studied by S. Kobayashi–T. Nagano [4]. The case of $\nu = 2$, S. Kaneyuki [3] classified and determined the types of subalgebras $\mathfrak{g}_{ev}, \mathfrak{g}_0$ of \mathfrak{g} and in the exceptional case, S. Gomyo [1] gave explicit realization of each \mathfrak{g}_k , I. Yokota [8], [9], [10] gave group realization of $\mathfrak{g}_{ev}, \mathfrak{g}_0$. Now, recently M. Hara [2] classified the 3-graded decomposition of simple Lie algebras \mathfrak{g} ,

$$\mathfrak{g} = \mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2 \oplus \mathfrak{g}_3$$

and determined the types of subalgebras $\mathfrak{g}_{ev} = \mathfrak{g}_{-2} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_2, \mathfrak{g}_0$ and $\mathfrak{g}_{ed} = \mathfrak{g}_{-3} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_3$ of \mathfrak{g} . The following table is the results of $\mathfrak{g}_{ev}, \mathfrak{g}_0, \mathfrak{g}_{ed}$ for the exceptional Lie algebras \mathfrak{g} of type G_2, F_4 and E_6 .

g	$\dim \mathfrak{g}_1, \dim \mathfrak{g}_2, \dim \mathfrak{g}_3$	\mathfrak{g}_{ev}
	\mathfrak{g}_0	\mathfrak{g}_{ed}
$\mathfrak{g}_2{}^C$	2, 1, 2	$\mathfrak{sl}(2,C)\oplus\mathfrak{sl}(2,C)$
	$C\oplus\mathfrak{sl}(2,C)$	$\mathfrak{sl}(3,C)$
$\mathfrak{g}_{2(2)}$	2, 1, 2	$\mathfrak{sl}(2,oldsymbol{R})\oplus\mathfrak{sl}(2,oldsymbol{R})$
	$oldsymbol{R} \oplus \mathfrak{sl}(2,oldsymbol{R})$	$\mathfrak{sl}(3, \boldsymbol{R})$
$\mathfrak{f_4}^C$	12, 6, 2	$\mathfrak{sl}(2,C)\oplus\mathfrak{sp}(3,C)$
	$C \oplus \mathfrak{sl}(2,C) \oplus \mathfrak{sl}(3,C)$	$\mathfrak{sl}(3,C)\oplus\mathfrak{sl}(3,C)$
$\mathfrak{f}_{4(4)}$	12, 6, 2	$\mathfrak{sl}(2,oldsymbol{R})\oplus\mathfrak{sp}(3,oldsymbol{R})$
(-)	$oldsymbol{R} \oplus \mathfrak{sl}(2,oldsymbol{R}) \oplus \mathfrak{sl}(3,oldsymbol{R})$	$\mathfrak{sl}(3,oldsymbol{R})\oplus\mathfrak{sl}(3,oldsymbol{R})$
$\mathfrak{e}_6{}^C$	18, 9, 2	$\mathfrak{sl}(2,C)\oplus\mathfrak{sl}(6,C)$
	$C \oplus \mathfrak{sl}(2,C) \oplus \mathfrak{sl}(3,C) \oplus \mathfrak{sl}(3,C)$	$\mathfrak{sl}(3,C)\oplus\mathfrak{sl}(3,C)\oplus\mathfrak{sl}(3,C)$
$\mathfrak{e}_{6(6)}$	18, 9, 2	$\mathfrak{sl}(2,oldsymbol{R})\oplus\mathfrak{sl}(6,oldsymbol{R})$
(-)	$oldsymbol{R} \oplus \mathfrak{sl}(2,oldsymbol{R}) \oplus \mathfrak{sl}(3,oldsymbol{R}) \oplus \mathfrak{sl}(3,oldsymbol{R})$	$\mathfrak{sl}(3, \mathbf{R}) \oplus \mathfrak{sl}(3, \mathbf{R}) \oplus \mathfrak{sl}(3, \mathbf{R})$

Communicated by Prof. A. Kono, January 24, 2000 Revised August 9, 2001