A lower bound on the spectral gap of the 3-dimensional stochastic Ising models

Bv

Nobuaki Sugimine

1. Introduction

Let us consider the Glauber dynamics at low temperature (large $\beta > 0$) which evolves on a cube $\Lambda_d(L) = (-L, L]^d \cap \mathbb{Z}^d$ $(L \in \mathbb{N})$ whose side-length is 2L with a boundary condition ω . By $\operatorname{gap}(\Lambda_d(L), \omega)$, we will denote the spectral gap corresponding to a boundary condition ω . Especially, By $\operatorname{gap}(\Lambda_d(L), \phi)$ and $\operatorname{gap}(\Lambda_d(L), +)$, we will mean spectral gaps corresponding to free and + boundary conditions, respectively. L. E. Thomas proved in [Tho89] that

(1.1)
$$\operatorname{gap}(\Lambda_d(L), \phi) \leq B \exp(-\beta C L^{d-1})$$
 for any $L \in \mathbb{N}$

for any $d \geq 2$ and sufficiently large $\beta > 0$, where $B = B(\beta, d) > 0$ and $C = C(\beta, d) > 0$. For d = 2 and any $\beta > \beta_c(2)$, it is known that the speed at which $\text{gap}(\Lambda_2(L), +)$ shrinks to zero as $L \nearrow \infty$ is different from the one at which $\text{gap}(\Lambda_2(L), \phi)$ does (see [Ma94], [Ma99] and [CGMS96]). In this paper, we confirm that it is also true for $d \geq 3$ and sufficiently large $\beta > 0$. In fact, we prove that for sufficiently large $\beta > 0$, some B > 0 and some C > 0.

(1.2)
$$\operatorname{gap}(\Lambda_d(L), +) \ge B \exp(-\beta C L^{d-2} (\log L)^2)$$
 for any $L \in \mathbb{N}$.

For each $\delta \in [0,1]$, we will consider the boundary condition η_{δ} which is defined by

(1.3)
$$\eta_{\delta}(x) = \begin{cases} +1 & \text{if } x^d = -L \text{ and } -\delta L < x^i \leq \delta L \ (i \neq d), \\ 0 & \text{otherwise.} \end{cases}$$

For d=3, we also prove that for sufficiently large $\beta>0$, some B>0 and some C>0,

(1.4)
$$\operatorname{gap}(\Lambda_3(L), \eta_1) \ge B \exp(-\beta C L^{\frac{5}{3}} (\log L)^2)$$
 for any $L \in \mathbb{N}$,

which implies at least that the speed at which $gap(\Lambda_3(L), \eta_1)$ shrinks to zero as $L \nearrow \infty$ is different from the one at which $gap(\Lambda_3(L), \phi)$ does, as was expected