Dihedral covers and an elementary arithmetic on elliptic surfaces

By

Hiro-o Tokunaga*

1. Introduction

Let X and Y be normal projective varieties defined over \mathbb{C} , the complex number field. We call X a cover of Y if there exists a finite surjective morphism $\pi: X \to Y$. The rational function field, $\mathbb{C}(X)$, is regarded as an algebraic extension of that of Y, $\mathbb{C}(Y)$, with deg $\pi = [\mathbb{C}(X): \mathbb{C}(Y)]$. The branch locus of a cover $\pi: X \to Y$, denoted by $\Delta(X/Y)$ or Δ_{π} , is the subset of Y given by

$$\Delta_{\pi} = \{ y \in Y \mid \pi \text{ is not locally isomorphic over } y \}.$$

It is well-known that Δ_{π} is an algebraic subset of codimension 1 if Y is smooth ([19]). We call X a D_{2n} -cover if (i) $\mathbb{C}(X)/\mathbb{C}(Y)$ is Galois and (ii) $\mathrm{Gal}(\mathbb{C}(X)/\mathbb{C}(Y)) \cong D_{2n}$, the dihedral group of order 2n. To present D_{2n} , we use the notation

$$D_{2n} = \langle \sigma, \tau \mid \sigma^2 = \tau^n = (\sigma \tau)^2 = 1 \rangle,$$

and fix it throughout this article. Given a D_{2n} -cover $\pi: X \to Y$, we canonically obtain the double cover, D(X/Y), of Y by taking the $\mathbb{C}(X)^{\tau}$ -normalization of Y, where $\mathbb{C}(X)^{\tau}$ is the fixed field of $\langle \tau \rangle$. X is an n-cyclic cover of D(X/Y) by its definition. We denote these covering morphisms by $\beta_1(\pi): D(X/Y) \to Y$ and $\beta_2(\pi): X \to D(X/Y)$, respectively. In [13], the author gave a method to deal with D_{2n} -covers. He exploited it in order to study D_{2n} -covers of \mathbb{P}^2 ([14], [15], and [16]) in the following setting:

- (i) Y is a surface obtained by a succession of blowing-ups from \mathbb{P}^2 .
- (ii) D(X/Y) has an elliptic fibration $\varphi: D(X/Y) \to \mathbb{P}^1$ with section O and $\beta_1(\pi): D(X/Y) \to Y$ coincides with the quotient map induced by the inversion homomorphism $z \mapsto -z$ with respect to the group law.
- (iii) X also has an elliptic fibration and $\beta_2(\pi)$ is the quotient map by the translation-by-n-torsion element in the Mordell-Weil group.

Received December 3, 2001 Revised February 12, 2004

^{*}Partly supported by the research grant 14340015 from JSPS