J. Math. Kyoto Univ. (JMKYAZ) 46-1 (2006), 231–234

Erratum to "On the minimal solution for quasilinear degenerate elliptic equation and its blow-up" (J. Math. Kyoto Univ. Vol. 44 No. 2, 381–439)

By

Toshio HORIUCHI and Peter KUMLIN

Proposition 8.2 in §8, namely the characterization of the behavior of solutions ψ_t as $t \to 0$ for a certain class of quasilinear elliptic equations, needs a correction about the support of their gradients. In the paper we used this property to have the uniform boundedness of $\psi_t, t \in [0, T]$ in the proof of Theorem 8.1, therefore it should be replaced by the next, in which the boundedness is simply given by a method of iteration.

Proposition 8.2. Let $\varphi \in \tilde{V}_{\lambda,p}(\Omega)$ satisfy $|\nabla \varphi| = 0$ on $F_{\varepsilon} = \{x \in \Omega : dist(x, F_{\lambda,p}) \leq \varepsilon\}$ for some $\varepsilon > 0$. Then there is a unique solution η_t of (8.14) for a small T > 0 such that $\eta_t = u_\lambda - t\psi_t$ for $\psi_t \in C^0([0, T], V_{\lambda,p}(\Omega))$ and

(8.1)
$$\sup_{x \in \Omega, t \in [0,T]} |\psi_t| < \infty,$$

(8.2)
$$\lim_{t \to 0} ||\psi_t - \varphi||_{V_{\lambda,p}(\Omega \setminus F_{\varepsilon})} = 0$$

Proof. Since ∇u_{λ} does not vanish in $\overline{\Omega \setminus F_{\varepsilon}}$ and the nonlinearity $f \in C^{1}([0,\infty))$, first we see $u_{\lambda} \in C^{2,\sigma}(\overline{\Omega \setminus F_{\varepsilon}})$ for some $\sigma \in (0,1)$ as a solution to uniformly elliptic equation. By the theory of monotone operator $L_{p}(\cdot)$, there is a unique solution $\psi_{t} \in W_{0}^{1,p}(\Omega)$ for each t and $\nabla \psi_{t}$ is Hölder continuous function w.r.t. $x \in \Omega$. In §9, it is proved that $\psi_{t} - \varphi$ satisfies uniformly elliptic equation in $\Omega \setminus F_{\varepsilon}$ for a sufficiently small t. Hence by the elliptic regularity theory ψ_{t} can be assumed to be uniformly bounded in $C^{2}(\overline{\Omega \setminus F_{\varepsilon}})$ for a fixed small $\varepsilon > 0$. Since $L_{p}(\cdot)$ is differentiable in $W_{0}^{1,p}(\Omega)$, we have

$$\frac{L_p(u_{\lambda} - t\psi_t) - L_p(u_{\lambda})}{t} = -\int_0^1 L'_p(u_{\lambda} - st\psi_t)\psi_t \, ds = -L'_p(u_{\lambda})\varphi \in C^2(\overline{\Omega \setminus F_{\varepsilon}}).$$

¹⁹⁹¹ Mathematics Subject Classification(s). 35J65, 35J35 Received June 23, 2005

Revised October 6, 2005