The k-Buchsbaum property for some polynomial ideals

By

Henrik Bresinsky and Lê Tuân Hoa*

Introduction

In order to define the topic of the title, we always assume that R is a standard graded ring over a field k and \mathfrak{m} is the maximal homogeneous ideal. k-Buchsbaum graded modules M over R can be defined as having their local cohomology modules $H^i_{\mathfrak{m}}(M)$, $0 \leq i \leq d$, annihilated by \mathfrak{m}^k , where d+1 is the Krull-dimension of M. (For undefined terminology see [E].) They are natural generalizations of Cohen-Macaulay modules, which have $H^i_{\mathfrak{m}}(M) = 0, \ 0 \leq i \leq$ d. A more workable definition for k-Buchsbaum ideals $\mathfrak{a} \subset K[x_0, \ldots, x_r] =:$ R_{r+1} , where \mathfrak{a} is a homogeneous ideal ($\delta(x_i) := \text{degree}(x_i) = 1, \ 0 \le i \le r$), is given below. An algorithm to test if such an ideal is perfect (i.e. R_{r+1}/\mathfrak{a} is Cohen-Macaulay) or Buchsbaum (i.e. R_{r+1}/\mathfrak{a} and $R_{r+1}/(\mathfrak{a}, F_0, \ldots, F_i), 0 \leq 1$ $i \leq d$, are 1-Buchsbaum for any system of parameters (s.o.p.) $\{F_0, \ldots, F_d\}$ was given in [BV1] and [BV2]. Thus both of these papers deal with a fixed $k \in \{0,1\}$ and do not address the question of an upper bound k, if a is to be k-Buchsbaum for some k. The purpose of the present paper is to investigate this question without explicit computation of Ext-modules or local cohomology modules. We obtain an algorithm for certain binomial ideals. Although in [BH] it was shown, that no conclusive information about the k-Buchsbaum property of \mathfrak{a} can be obtained from $in(\mathfrak{a})$ (the ideal of initial terms), our algorithm is based on the Gröbner bases calculations.

1. Homogeneous k-Buchsbaum ideals

We assume $R_{r+1} := K[x_0, \ldots, x_r]$, K an infinite field, $\mathfrak{a} \subset R_{r+1}$ a homogeneous ideal (with respect to the standard grading), dim $(\mathfrak{a}) =$ Krull-dim $(R_{r+1}/\mathfrak{a}) = d+1$, without loss of generality $\{x_0, \ldots, x_d\}$ a s.o.p. for \mathfrak{a} since K is infinite (i.e. the images $\{\bar{x}_0, \ldots, \bar{x}_d\}$ form a s.o.p. in R_{r+1}/\mathfrak{a}).

¹⁹⁹¹ Mathematics Subject Classification(s). 13P10, 13H10, 13D45 Received July 16, 2002

Revised May 6, 2003

^{*}Supported by the National Basic Research Program (Vietnam).