On the Hecke operator U(p)

By

Siegfried BÖCHERER (with an appendix by Ralf Schmidt)

Introduction

The operator U(p) is a familiar tool in the theory of elliptic modular forms (introduced by Hecke in [5]). It can be defined in the same way on holomorphic Siegel modular forms of degree n for the congruence subgroups $\Gamma_0(N) := \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \operatorname{Sp}(n, \mathbb{Z}) \mid c \equiv 0 \ (N) \right\}$; the action of U(p) on the Fourier expansion of such a modular form f is given by

$$f = \sum_{T} a(T) e^{2\pi i \operatorname{tr}(TZ)} \longmapsto f \mid U(p) = \sum_{T} a(pT) e^{2\pi i \operatorname{tr}(TZ)};$$

here T runs over all symmetric half integral positive semidefinite matrices of size n and Z is an element of Siegel's upper half space. To be more precise, let us denote by $[\Gamma_0(N), k, \chi]$ the space of Siegel modular forms of weight k with respect to the group $\Gamma_0(N)$ and the nebentypus character χ . Then U(p) maps this space into itself (if $p \mid N$) and maps it into $[\Gamma_0(\frac{N}{p}), k, \chi]$ if $p^2 \mid N$ and χ is defined modulo $\frac{N}{p}$. It is clear from the theory of old- and newforms (for n = 1) that we can expect a nontrivial kernel for U(p) if $p^2 \mid N$ and χ is defined modulo $\frac{N}{p}$.

The injectivity of U(p) for $p^2 \mid N$ and χ not defined modulo $\frac{N}{p}$ can be proved along the classical lines (see Section 6). The main purpose of the present note is to show that U(p) is injective for $p \mid \mid N$ (see Section 3). This will be done in a purely algebraic manner by studying the properties (invertibility) of the double coset $\Gamma_0(p) \cdot \begin{bmatrix} 0_n - \mathbf{1}_n \\ \mathbf{1}_n & 0_n \end{bmatrix} \cdot \Gamma_0(p)$ in the abstract Hecke algebra associated to the pair ($\Gamma_0(p)$, $\operatorname{Sp}(n, \mathbb{Z})$) and its analogue over the finite field \mathbb{F}_p ; to include the case of nontrivial nebentypus χ we will have to work with a slightly smaller group $\Gamma_1(p)$.

The results of this paper are motivated (and are used in a crucial way) in our investigation of the basis problem for Siegel modular forms with level [2].

Received March 2, 2005