Illinois Journal of Mathematics Volume 49, Number 4, Winter 2005, Pages 1203–1220 S 0019-2082

PROBABILISTIC INVARIANT MEASURES FOR NON-ENTIRE FUNCTIONS WITH ASYMPTOTIC VALUES MAPPED ONTO ∞

JANINA KOTUS

ABSTRACT. We study the dynamics of transcendental meromorphic functions of the form $f(z) = R \circ \exp(z)$, where R is a non-constant rational map and both asymptotic values R(0) and $R(\infty)$ are eventually mapped onto ∞ . With each map f we associate its projection F on the cylinder \mathcal{P} . Let J_F^r consist of all points whose trajectory returns infinitely often to some compact set whose intersection with the postsingular set is empty, and let $h = \text{HD}(J_F^r)$ be the Hausdorff dimension of J_F^r . We prove that the h-dimensional Hausdorff measure H^h of J_F^r is positive and finite, while the h-dimensional packing measure of J_F^r is locally infinite at every point of this set. We also prove that there exists a unique F-invariant Borel probability measure μ on J_F^r that is absolutely continuous with respect to the Hausdorff measure H^h , and that μ is ergodic and conservative.

1. Introduction

We consider the family \mathcal{R} of transcendental meromorphic functions f(z): $\mathbb{C} \to \overline{\mathbb{C}}$ of the form

(1.1)
$$f(z) = R \circ \exp(z).$$

where R is a non-constant rational map. The set of singularities $\text{Sing}(f^{-1})$ consists of finitely many critical values and two asymptotic values

$$\xi_1 := R(0), \quad \xi_2 := R(\infty).$$

Let Q^* be the class of non-entire functions from \mathcal{R} such that both asymptotic values are mapped onto infinity, i.e., there exist numbers $q_i > 1$, i = 1, 2, such

©2005 University of Illinois

Received April 25, 2005; received in final form November 7, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 37F35, 37F10, 30D05.

The research was supported in part by the Polish KBN Grant No. 2 PO3A 034 25, the Warsaw University of Technology Grant No. 504G 11200043000, and by NSF/PAN grant INT-0306004.