A CHARACTERIZATION OF CERTAIN REGULAR d-CLASSES IN SEMIGROUPS

BY

R. J. WARNE

The concept of a d-class in a semigroup was introduced and investigated by Green [3]. The importance of this concept in the study of semigroups is indicated in [2]. Regular d-classes have been studied by Miller and Clifford [2], [4]. A semigroup consisting of a single d-class is called bisimple. Clifford [1] has determined the structure of all bisimple inverse semigroups with identity.

Let S be a semigroup and A a non-empty subset of S. Let E_A denote the collection of idempotents of A. E_A may be partially ordered as follows: $e \leq f$ if and only if ef = fe = e. We characterize regular d-classes D for which E_D is linearly ordered and we determine the structure of bisimple inverse semigroups G for which E_G is linearly ordered. The connection between certain regularity conditions [2] and the linear ordering of idempotents is considered.

Two elements of S are said to be R-(L-) equivalent if they generate the same principal right (left) ideal. Two elements a, b of S are d-equivalent if there exists x in S such that a R x and x L b (or equivalently there exists y in S such that a L y and y R b). An element a in S is called right (left) regular if $a R a^2 (a L a^2)$. a is called biregular if it is either right regular or left regular. S is said to be biregular if all its elements are biregular. An element a in S is regular if a in aSa. A subset of S is regular if all its elements are regular. A regular semigroup in which the idempotents commute is called an inverse semigroup [2], [5].

Let e be an idempotent element of S. $P_e(Q_e)$ will denote the right (left) unit subsemigroup of eSe (the set of elements of eSe having a right (left) inverse with respect to e the identity of eSe). H_e will denote the group of units of eSe.

By a decomposition of S we mean a partition of S into a union of disjoint subsemigroups.

 S^1 will denote S with an appended identity [2, p. 4].

LEMMA. Let S be a bisimple inverse semigroup. Then E_s is linearly ordered if and only if S is biregular.

Proof. Suppose that E_s is linearly ordered. Then, if a in S there exist e, f in E_D such that a R e and a L f [2], [4]. If ef = fe = e, then aea L fea or $a^2 L a$ [2], [4]. If ef = fe = f, $a^2 R a$. Conversely, suppose that S is biregular. If e, f in E_D , there exists a in D such that e R a and a L f. Hence, if $a R a^2$ then a R ae. Since a L f, there exists x in S such that xa = f. Thus, xa R xae

Received December 28, 1963.