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It is the purpose of this note to define an abstract process, under which, as
special cases, will fall the apparently diverse concepts of Lebesgue m-area for
mappings from finitely triangulable spaces, the various Lebesgue-Williams
areas for mappings from compact metric spaces, outer measures in an abstract
set, metric outer measures, such as Hausdorff r-measure, in a metric space, the
Daniell-Stone upper integral, the Burkill lower integral for interval functions,
and perhaps others.
The form of our definition of the extent function M(u) was suggested by

the definitions of m-area given by R. F. Williams [2]. Its substance can be
regarded as an extension of the ideas of Lebesgue [6], and of Frchet [1], who
was, apparently, the first to notice that, in the classical case of surface area,
Lebesgue’s definition may be viewed as a process for extending a semi-con-
tinuous function. See also M. H. Stone [4] in connection with what we call
measuring systems.
Although our abstract process does not, in general, provide semi-continuous

extensions in Frchet’s sense [1], the extent function M(u) which arises is
always semi-continuous. It will be clear that while our present definition
leads to properties of one-sided lower-semi continuity, the definition may be
modified so that, in general, functions exhibiting any of four types of semi-
continuity will arise.

Measuring systems and the definition of M(u)
A function on U X U to R, where U is a set and R is the set of non-nega-

tive real numbers, will be called an Ecart for U and the pair (U, ) will be
called an Ecart.ed space if satisfies the following two conditions"

(1) (u, u) 0 for all u e U,

(2) (u, v)

_
(u, w) + (w, v) for all u, v, w e U.

If U is a set, then a quintuple [, A, q, d, v], where is an cart for
U, A is a set, q is a function on A to U, d is a function on A to R and v is a
function on A to R will be called a measuring system for U.

For a given measuring system [, A, q, d, v] for U, we define, for
each u e U, the following subset R(u) of R:

R(u) Ir RI for every v > 0, there exists an a e A such that
(u, q(a)) < , d(a) < and v(a) < r + }.
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