THE LINEAR CUBIC p-ADIC RECURRENCE AND ITS VALUE FUNCTION

BY
 Harold C. Kurtz
 1. Introduction and summary of results

Let

$$
\begin{equation*}
\Omega_{n+3}=P \Omega_{n+2}-Q \Omega_{n+1}+R \Omega_{n} \tag{1.1}
\end{equation*}
$$

be a linear cubic p-adic recurrence with coefficients in the rational p-adic field R_{p}. The roots α, β, and γ of the characteristic polynomial

$$
f(Z)=Z^{3}-P Z^{2}+Q Z-R=(Z-\alpha)(Z-\beta)(Z-\gamma)
$$

are p-adic algebraic numbers generating the root field $R_{p}(\alpha, \beta, \gamma)=\Re_{p}$ and will be assumed distinct and nonzero.

Let $\left(W_{n}\right): W_{0}, W_{1}, \cdots, W_{n}, \cdots$ be a solution of (1.1) with given initial values W_{0}, W_{1}, and W_{2} in R_{p} not all zero, and let $w_{n}=\phi\left(W_{n}\right)$ be the p-adic value of W_{n}. We investigate the following "valuation problem": Given a sequence (W_{n}) satisfying (1.1) with specified initial values as above, to determine $\phi\left(W_{n}\right)$. This problem is trivial if one of the ratios of the roots of $f(Z)$ is a root of unity in $\Re_{p} ; f(z)$ is then termed degenerate. Hence we assume nondegeneracy, i.e., $(\alpha / \beta)^{n},(\beta / \gamma)^{n}$, and $(\alpha / \gamma)^{n} \neq 1$ for all positive integers n.

We show that we may restrict ourselves to recurrences whose coefficients and initial values are p-adic integers where at least one coefficient and one initial value are p-adic units. Except when $p=2$ or 3 , we need only consider these cases:

I P, Q, and R all p-adic units,
II P and Q units, R a non-unit,
III P a unit, Q and R non-units.
In Case III, the determination of $\phi\left(W_{n}\right)$ is trivial; for $n \geqq$ some $n_{0}, \phi\left(W_{n}\right)$ equals a constant. In II, the Hensel Lemma enables us to analyze the valuation of the cubic recurrence in terms of the valuation of the quadratic recurrence (results (3.2)-(3.5)), explicit formulas for the latter being given in Ward's paper [2]. Case I has been studied by Ward [1] when coefficients and initial values are rational integers; the results are extended to recurrences where these are p-adic integers in Section 4.

It appears likely that for a given integer t, the valuation problem for the $t^{\text {th }}$ order nondegenerate recurrence

$$
\Omega_{n+t}=A \Omega_{n+(t-1)}+\cdots+M \Omega_{n}
$$

Received August 24, 1962.

