THE LINEAR CUBIC p-ADIC RECURRENCE AND ITS VALUE FUNCTION

BY HAROLD C. KURTZ

1. Introduction and summary of results

Let

$$\Omega_{n+3} = P\Omega_{n+2} - Q\Omega_{n+1} + R\Omega_n$$

be a linear cubic p-adic recurrence with coefficients in the rational p-adic field R_p . The roots α , β , and γ of the characteristic polynomial

$$f(Z) = Z^3 - PZ^2 + QZ - R = (Z - \alpha)(Z - \beta)(Z - \gamma)$$

are p-adic algebraic numbers generating the root field $R_p(\alpha, \beta, \gamma) = \Re_p$ and will be assumed distinct and nonzero.

Let $(W_n): W_0$, W_1 , \cdots , W_n , \cdots be a solution of (1.1) with given initial values W_0 , W_1 , and W_2 in R_p not all zero, and let $w_n = \phi(W_n)$ be the p-adic value of W_n . We investigate the following "valuation problem": Given a sequence (W_n) satisfying (1.1) with specified initial values as above, to determine $\phi(W_n)$. This problem is trivial if one of the ratios of the roots of f(Z) is a root of unity in \Re_p ; f(z) is then termed degenerate. Hence we assume nondegeneracy, i.e., $(\alpha/\beta)^n$, $(\beta/\gamma)^n$, and $(\alpha/\gamma)^n \neq 1$ for all positive integers n.

We show that we may restrict ourselves to recurrences whose coefficients and initial values are p-adic integers where at least one coefficient and one initial value are p-adic units. Except when p=2 or 3, we need only consider these cases:

- I P, Q, and R all p-adic units,
- II P and Q units, R a non-unit,
- III P a unit, Q and R non-units.

In Case III, the determination of $\phi(W_n)$ is trivial; for $n \geq \text{some } n_0$, $\phi(W_n)$ equals a constant. In II, the Hensel Lemma enables us to analyze the valuation of the cubic recurrence in terms of the valuation of the quadratic recurrence (results (3.2)-(3.5)), explicit formulas for the latter being given in Ward's paper [2]. Case I has been studied by Ward [1] when coefficients and initial values are rational integers; the results are extended to recurrences where these are p-adic integers in Section 4.

It appears likely that for a given integer t, the valuation problem for the tth order nondegenerate recurrence

$$\Omega_{n+t} = A\Omega_{n+(t-1)} + \cdots + M\Omega_n$$

Received August 24, 1962.