
HOMOGENEITY AND BOUNDED ISOMETRIES IN
NEGATIVE CURVATURE

MANIFOLDS OF

BY

JOSEPH A. WOLF

1. Statement of results
The obiect of this paper is to prove Theorem 3 below, which gives a fairly

complete analysis of the structure of Riemannian homogeneous manifolds of
nonpositive sectional curvature. The main tool is

THEOREM 1. Let M be a complete connected simply connected Riemannian
manifold with every sectional curvature nonpositive. Let be an isometry of M;
given m M, let X,, be the (unique by hypothesis on M) tangentvector to M at m
such that exp(X) /(m); let X be the vectorfield on M defined by the
Let Mo be the Euclidean factor in the de Rham decomposition of M, so
M Mo X M where M is the product of the irreducible factors. Then these
are equivalent"

(1) There is an ordinary translation "o of the Euclidean space Mo such that
the action of " on M Mo X M’ is given by (m0, m’) (o too, m’).

(2) X is a parallel vectorfield on M.
(3) / is a Clifford translation of M.
(4) / is a bounded isometry of M.

In particular, if Mo is trivial, then every bounded isometry of M is trivial.

As an immediate consequence of Theorem 1, we have

THEOREM 2. Let M be a complete connected simply connected Riemannian
manifold of nonpositive sectional curvature, and let F be a properly discontinuous
group of fixed-point-free isometries of M. Then these are equivalent:

(1) M/F is isometric to the product of a fiat torus with a complete simply
connected Riemannian manifold of nonpositive sectional curvature.

(2) Every element of F is a Clifford translation of M.
(3) Every element of F is a bounded isometry of M.

In particular, if one of these conditions holds, then M/F is diffeomorphic to the
product of a torus and a Euclidean space.

To prove the following theorem, which is our goal, one notes that (1)
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An isometry of a metric space is called a Clifford translation if the distance between

point and its image is the same for every point.
A bounded isometry of a metric space is an isometry such that the distance between

point and its image is at most equal to some bound.
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