CONJUGACY IN THE REAL THREE-DIMENSIONAL ORTHOGONAL GROUPS

BY Barth Pollak

Introduction

There are two three-dimensional orthogonal groups over the field \mathbf{R} of real numbers determined by whether or not the quadratic form which defines the "metric" on the space is anisotropic (ordinary Euclidean 3-space) or not. In both cases the commutator subgroup Ω is a simple group. (When the space is anisotropic, the commutator subgroup is the set of all isometries of determinant +1; when the space is isotropic, it is a normal subgroup of index 2 in that group.) Thus if $a \neq 1$ is in Ω and $b \in \Omega$, there exists a positive integer n such that

$$b = \prod_{i=1}^{n} t_i a^{\pm 1} t_i^{-1}.$$

Let $\mathbf{N}_a(b)$ denote the smallest n for which (*) is true. By the use of quaternions, we give an explicit formula for $\mathbf{N}_a(b)$ in both cases.

1. Quaternion algebras

Let K be a field of characteristic $\neq 2$. By a quaternion algebra \mathbf{H} over K we mean a central simple associative algebra of dimension 4 over K. It is well known that \mathbf{H} has a basis of the form 1, I, J, IJ with 1 the multiplicative identity, $I^2 = \alpha$, $J^2 = \beta$, IJ = -JI, where α , $\beta \in K^*$ (the multiplicative group of nonzero elements of K). (See [1, Theorem 27, p. 146].) We shall use the notation (α, β) for a quaternion algebra possessing such a basis. \mathbf{H} possesses an antiautomorphism of period 2 called conjugation, the image of $X \in \mathbf{H}$ being denoted X^c . Then we have $X + X^c = S(X)1$, $XX^c = N(X)1$ with S(X), $N(X) \in K$ called respectively the trace and norm of X, and $X^2 - S(X)X + N(X)1 = 0$ for each $X \in \mathbf{H}$. If S(X) = 0, we call X pure. If $X = \xi_0 1 + \xi_1 I + \xi_2 J + \xi_3 IJ$, we have

(1)
$$N(X) = \xi_0^2 - \alpha \xi_1^2 - \beta \xi_2^2 + \alpha \beta \xi_3^2.$$

For future use we set $\mathbf{H}_1 = \{X \in \mathbf{H} \mid N(X) = 1\}$. We conclude this section by stating

THEOREM 1. Let A, $B \in \mathbf{H}$. There exists $T \in \mathbf{H}$ such that $B = TAT^{-1}$ if and only if N(A) = N(B) and S(A) = S(B). There exists $T \in \mathbf{H}_1$ such that $B = TAT^{-1}$ if and only if in addition to the above conditions,

(i) $(N(B-A^c), S^2(A)-4N(A)) \cong \mathbf{M}_2(K)$, the algebra of all 2×2 matrices over K provided $N(B-A^c)$ and $S^2(A)-4N(A)$ are both nonzero; (ii) if $S^2(A)-4N(A)=0$, then $N(B-A^c) \in K^2$.

Received July 10, 1962.