DIOPHANTINE APPROXIMATION AND NORM DISTRIBUTION IN GALOIS ORBITS

BY

C. J. BUSHNELL

This paper investigates another facet of a problem, introduced in [1] and [2], concerning relations (or lack of them) between arithmetic properties and Galois-module properties of algebraic numbers. We let K be an algebraic number field, normal (and of finite degree) over the field **Q** of rational numbers, and we write $\Gamma = \text{Gal}(K/\mathbf{Q})$. The natural action $\gamma: b \mapsto b^{\gamma}$, $\gamma \in \Gamma$, $b \in K$, of the Galois group on K extends to a module structure over the rational group algebra $\mathbf{Q}\Gamma$. Explicitly, if $a \in K$, and if

$$x = \sum_{\gamma \in \Gamma} x_{\gamma} \gamma, \quad x_{\gamma} \in \mathbf{Q},$$

is a typical element of $Q\Gamma$, the module action is given by the formula

$$a\cdot x=\sum_{\gamma\in\Gamma}a^{\gamma}x_{\gamma}.$$

One knows (Hilbert's Normal Basis Theorem) that K is a free $\mathbf{Q}\Gamma$ -module of rank one. That is, there exists $a \in K$ such that $K = a \cdot \mathbf{Q}\Gamma$, or, equivalently, the conjugates $a^{\gamma}, \gamma \in \Gamma$, of a are linearly independent over \mathbf{Q} .

This module structure naturally leads to others. Most notably, the ring O_K of algebraic integers in K is a module over the integral group ring $\mathbb{Z}\Gamma$. If every prime of \mathbb{Q} is at most tamely ramified in K, O_K is "usually" a free $\mathbb{Z}\Gamma$ -module: there exists $a \in K$ such that $O_K = a \cdot \mathbb{Z}\Gamma$. (This holds if, for example, Γ has no irreducible symplectic characters. See [4] for a complete account.) It is the arithmetic properties of these elements a with $a \cdot \mathbb{Z}\Gamma = O_K$ which primarily interest us. Here we are concerned with their norms.

This is better considered in a more general context. We fix an element $a \in K$ such that $a \cdot \mathbf{Q}\Gamma = K$. (These elements are, in some geometrical sense, typical.) The linear isomorphism $\mathbf{Q}\Gamma \simeq K$ given by $x \mapsto a \cdot x$, $x \in \mathbf{Q}\Gamma$, enables us to transfer arithmetical functions from K to $\mathbf{Q}\Gamma$. In particular, we write

$$\nu_a(x) = N_{K/\mathbf{Q}}(a \cdot x), \quad x \in \mathbf{Q}\Gamma,$$

 $\ensuremath{\mathbb S}$ 1983 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received March 27, 1981.