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ON SPECTRAL DECOMPOSITION OF CLOSED
OPERATORS ON BANACH SPACES

BY

WANG SHENGWANG AND I. ERDELYI

This paper is concerned with presenting some necessary and sufficient
conditions for a closed operator to have the spectral decomposition property.
We refer to [2] for notations and terminology, but for convenience we repeat
some definitions.
Throughout this paper, T is a dosed operator with domain Dr and range in

a Banach space over the complex field C. Let N denote the set of natural
numbers and let Z/ N t3 {0}. If S is a set then S is the closure, Sc is the
complement, Int S is the interior and we denote by covS the collection of all
finite open covers of S. Without loss of generality, we assume that for S c C,
every { Gi)’=0 covS has, at most, one unbounded set Go. A set S C is
said to be a neighborhood of oo, in symbols S Voo, if ff is compact in C.
Given T, o(T) is the spectrum, oa(T) is the approximate point spectrum,
p(T) is the resolvent set and R(. ;T) is the resolvent operator. If A is a
bounded operator then poo(A) denotes the unbounded component of p(A). If
T has the single valued extension property (SVEP), then or(x), Or(x) and
x(-) denote the local spectrum, the local resolvent set and the local resolvent
function, respectively, at x X.

For S C, we shall make an extensive use of the spectral manifold

(1) x(r, s) (x x: o (x) s ).

We write Inv T for the lattice of the subspaces of X which are invariant
under T. For Y InvT, TIY is the restriction of T to Y and 7 T/Y
denotes the coinduced operator by T on the quotient space X/Y. The coset
=x+ Y is a vector in X/Y and D iff Dr . If f is an
X-valued function then the function f has the range in X/Y.

1. Introduction

In this section, certain basic notions pertaining to the spectral theory will be
touched upon and some preliminary results will be established to be used in
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