ON SPECTRAL DECOMPOSITION OF CLOSED OPERATORS ON BANACH SPACES

BY
Wang Shengwang and I. Erdelyi

This paper is concerned with presenting some necessary and sufficient conditions for a closed operator to have the spectral decomposition property. We refer to [2] for notations and terminology, but for convenience we repeat some definitions.

Throughout this paper, T is a closed operator with domain D_{T} and range in a Banach space over the complex field \mathbf{C}. Let \mathbf{N} denote the set of natural numbers and let $Z^{+}=\mathbf{N} \cup\{0\}$. If S is a set then \bar{S} is the closure, S^{c} is the complement, Int S is the interior and we denote by $\operatorname{cov} S$ the collection of all finite open covers of S. Without loss of generality, we assume that for $S \subset \mathbf{C}$, every $\left\{G_{i}\right\}_{i=0}^{n} \in \operatorname{cov} S$ has, at most, one unbounded set G_{0}. A set $S \subset \mathbf{C}$ is said to be a neighborhood of ∞, in symbols $S \in V_{\infty}$, if $\overline{S^{c}}$ is compact in C. Given $T, \sigma(T)$ is the spectrum, $\sigma_{a}(T)$ is the approximate point spectrum, $\rho(T)$ is the resolvent set and $R(\cdot ; T)$ is the resolvent operator. If A is a bounded operator then $\rho_{\infty}(A)$ denotes the unbounded component of $\rho(A)$. If T has the single valued extension property (SVEP), then $\sigma_{T}(x), \rho_{T}(x)$ and $x(\cdot)$ denote the local spectrum, the local resolvent set and the local resolvent function, respectively, at $x \in X$.

For $S \subset \mathbf{C}$, we shall make an extensive use of the spectral manifold

$$
\begin{equation*}
X(T, S)=\left\{x \in X: \sigma_{T}(x) \subset S\right\} . \tag{1}
\end{equation*}
$$

We write $\operatorname{Inv} T$ for the lattice of the subspaces of X which are invariant under T. For $Y \in \operatorname{Inv} T, T \mid Y$ is the restriction of T to Y and $\hat{T}=T / Y$ denotes the coinduced operator by T on the quotient space X / Y. The coset $\hat{x}=x+Y$ is a vector in X / Y and $\hat{x} \in D_{\hat{T}}$ iff $\hat{x} \cap D_{T} \neq \varnothing$. If f is an X-valued function then the function \hat{f} has the range in X / Y.

1. Introduction

In this section, certain basic notions pertaining to the spectral theory will be touched upon and some preliminary results will be established to be used in

