ON THE TENSOR PRODUCT OF A CLASS OF NON-LOCALLY CONVEX TOPOLOGICAL VECTOR SPACES

BY

W. DEEB AND R. KHALIL

0. Introduction

Let f be a real valued function defined on $[0, \infty)$ which satisfies:

- (i) f(x) = 0 if and only if x = 0;
- (ii) f is increasing;
- (iii) $f(x + y) \le f(x) + f(y);$
- (iv) $\lim_{x \to 0^+} f(x) = 0.$

It is clear that every such function is continuous. For every sequences $x = (x_n)$ we define

$$|x|_f = \sum_{n=0}^{\infty} f|x_n|.$$

The space L(f) is the set of all real sequences $x = (x_n)$ such that $|x|_f < \infty$. One can easily show that $|x|_f$ defines a metric on L(f).

It was shown in [1] that $(\hat{L}(f), |\cdot|_f)$ is a complete metric space.

The space $(L(f), | |_f)$ is a topological vector space [1]. For more about L(f) spaces we refer to [2], [3], [7]. The object of this paper is to characterize the isometries of $(L(f), | |_f)$ and to define the projective tensor product of L(f) with itself, proving some results on the tensor product.

Throughout this paper, N will denote the set of positive integers. If X and Y are topological vector spaces, WL(X, Y) will denote the weakly continuous linear operators from X into Y, and B(X, Y) the continuous bilinear functional on $X \times Y$. The dual of a topological vector space X will be denoted by X^* .

1. Isometries of L(f)

A continuous linear operator F: $L(f) \rightarrow L(f)$ will be called an isometry if

$$|F(x)|_f = |x|_f$$
 for all $x \in L(f)$.

Let e_i be the sequence with 1 at the *i*th-coordinate and zero elsewhere.

Received December 12, 1983.

^{© 1986} by the Board of Trustees of the University of Illinois Manufactured in the United States of America