LIKELIHOOD RATIOS FOR STOCHASTIC PROCESSES RELATED BY GROUPS OF TRANSFORMATIONS II

BY

T. S. PITCHER¹

We will make use of the notation established in *Likelihood Ratios for Stochastic Processes Related by Groups of Transformations*² (referred to as (I) in the following). Thus, X, S, and P are a set, a σ -algebra of subsets, and a probability measure on S. T_{α} is a one-parameter group of automorphisms of an algebra F of bounded, real-valued, S-measurable functions satisfying

- (i) T_{α} preserves bounds, and $T_{\alpha}f(x)$ has a continuous derivative $D(T_{\alpha}f)(x)$ in α which is bounded uniformly in α and x for every f in F and x in X, and
- (ii) if f_n is a uniformly bounded sequence from F with $\lim f_n(x) = 0$ for all x, then $\lim T_{\alpha} f_n(x) = 0$ for all x.

Examples of this situation will be found in (I).

We will write P_{α} for the measures which are the completions of

$$l_{\alpha}(f) = \int T_{\alpha} f \, dP,$$

 $K_{\sigma}(\alpha)$ for the Gaussian kernel $(2\pi\sigma)^{-1/2} \exp(-\alpha^2/2\sigma)$, and P_{α}^{σ} for the measures which are the completions of

$$l_{\alpha}^{\sigma}(f) = \int_{-\infty}^{\infty} K_{\sigma}(\beta) \left(\int T_{\alpha+\beta} f \, dP \right) d\beta.$$

According to Theorem 4.2 of (I) the P^{σ}_{α} with $\sigma > 0$ and any α are mutually absolutely continuous, and for each positive σ there is a ϕ^{σ} in $L_1(P^{\sigma})$ satisfying

$$\int \phi^{\sigma} T_{\alpha} f \, dP^{\sigma} = \frac{\partial}{\partial \alpha} \int T_{\alpha} f \, dP^{\sigma}$$

for f in F and

$$\log \frac{dP_{\alpha}^{\sigma}}{dP^{\sigma}} = \int_{0}^{\alpha} T_{-\beta} \phi^{\sigma} d\beta.$$

The theorem also asserts that the transformations $V^{\sigma}(\alpha)$ on $L_1(P^{\sigma})$ defined by the equation $V^{\sigma}(\alpha)f = (dP_{\alpha}^{\sigma}/dP^{\sigma})T_{-\alpha}f$ for f in F form a strongly continuous one-parameter group of isometries whose infinitesimal generator A^{σ} is defined on F and satisfies $A^{\sigma}f = \phi^{\sigma}f - Df$ there.

We note that \overline{F} , the set of uniform limits from F, contains the functions $f \wedge g = \min(f, g)$ and $f \vee g = \max(f, g)$ whenever it contains f and g,

Received December 3, 1962; received in revised form March 25, 1963.

¹ Lincoln Laboratory, Massachusetts Institute of Technology, operated with support from the U. S. Army, Navy, and Air Force.

² Illinois Journal of Mathematics, vol. 7 (1963), pp. 396-414.