RESIDUAL PROPERTIES OF POLYCYCLIC GROUPS

BY

A. LEARNER

1. Let P be a group property. A group G is residually-P if to any nonidentity element in G there is a normal subgroup K of G excluding x, and such that G/K has P. K. A. Hirsch [6] proved that a polycyclic group, which is a soluble group with maximal condition, is residually finite. Our aim is to sharpen this result.

Let π be a set of prime numbers. A π -number is a positive integer whose prime divisors lie in π . A π -group is a finite group of order a π -number. If π contains just one prime p, we write p-number and p-group. Thus a p-group here always means a finite p-group.

Our main result is

THEOREM 1. A polycyclic group is residually a π -group for a finite set of primes π .

We give below an explicit method for constructing the set π . It depends only on the group G and the finite factors occurring in a normal series for G. In particular if G is completely infinite (defined below), we can give a definite bound for π depending only on an invariant of G. A corollary to the theorem is a result of K. W. Gruenberg [3] on finitely generated nilpotent groups, which are a special class of polycyclic groups [7, p. 232].

Our notation is as follows:

If S is a subset of a group G, $\operatorname{Gp}(S) = \operatorname{subgroup}$ generated by S; $G^t = \operatorname{Gp}(g^t | g \in G)$, where t is a positive integer; $[H, K] = \operatorname{Gp}([h, k] = h^{-1}k^{-1}hk | h \in H, k \in K)$, where H, K are subsets of G; $C_g(F) = \operatorname{centraliser}$ in G of a factor group F in G; $\varphi(G) = \operatorname{Frattini}$ subgroup of G; Greek letters are used for sets of primes. As usual π' is the complementary set to π

As usual π' is the complementary set to π .

2. For any positive integer t, G^t is a characteristic subgroup of finite index in a polycyclic group G. If t is a π -number, then G/G^t has exponent a π -number and so is a π -group. Hence any normal subgroup H of index a π -number m in G, contains the characteristic subgroup G^m , also of index a π -number. If H is residually a π -group, then for the same reason any $x \in H$ is excluded from some H^n where n is a π -number. Now H^n is normal in G and of index a π -number. These remarks make the following lemma obvious.

LEMMA 1. If a normal subgroup of index a γ -number in G is residually a δ -group, then G is residually a π -group, where π is the union of γ and δ .

Received May 17, 1963.